NATIONAL ACADEMY OF SCIENCES J E R Z Y N EYMAN 1894—1981 A Biographical Memoir by E . L . L EHMANN Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1994 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. JERZY NEYMAN April 16, 1894-August 5, 1981 BY E. L. LEHMANN URING THE 1930s Jerzy Neyman developed a new para- Ddigm for theoretical statistics, which derives optimal statistical procedures as solutions to clearly stated math- ematical problems. He applied these ideas to the theories of hypothesis testing, estimation by confidence intervals, and survey sampling. During the following decades this became the dominant approach to theoretical statistics. In addition to his scientific work, Neyman was a far-seeing and highly efficient administrator who in the decade 1945- 55 created in Berkeley a substantial Department of Statis- tics of international stature. Starting in 1945 he also estab- lished a Berkeley series of Symposia on Mathematical Statistics and Probability, meeting at five-year intervals, which for the next twenty-five years became the principal series of international meetings in statistics. Neyman's long life was dominated by his work, of which he took a comprehensive view encompassing its academic, administrative, and social aspects. Adapted from a biographical article written for the Dictionary of Scientific Biography, Supplement II. I am grateful to the American Council of Learned Societies for permitting the use of this mate- rial. 395 396 BIOGRAPHICAL MEMOIRS EARLY YEARS Jerzy Neyman was born in Bendery (Russia) to parents of Polish ancestry. His full name with title—Splawa-Neyman— the first part of which he dropped at age thirty, reflects membership in the polish nobility. Neyman's father Czeslaw, who died when Jerzy was twelve, was a lawyer and later judge and an enthusiastic amateur archeologist. Since the family had been prohibited by the Russian authorities from living in Central Poland, then under Russian domination, Neyman grew up in Russia: in Kherson, Melitopol, Simferopol, and (after his father's death) Kharkov, where in 1912 he entered the university. At Kharkov, Neyman was first interested in physics, but because of his clumsiness in the laboratory he abandoned it in favor of mathematics. On reading Lebesgue's "Lecons sur L'integration et la Recherche des Fonctions Primitives," he later wrote (in a Festschrift in honor of Herman Wold [1970]): "I became emotionally involved. I spent the sum- mer of 1915 at a country estate, coaching the son of the owner. There were three summer houses on the estate, filled with young people, including girls whom I found beautiful and most attractive. However, the involvement with sets, measure and integration proved stronger than the charms of young ladies and most of my time was spent either in my room or on the adjacent balcony either on study or on my first efforts at new results, intended to fill in a few gaps that I found in Lebesgue." A manuscript on Lebesgue integration (500 pp., handwritten) that Neyman submitted to a prize competition won a gold medal. One of his mentors at Kharkov was Serge Bernstein who lectured on probability theory and statistics (including ap- plication of the latter to agriculture), subjects that did not particularly interest Neyman. Nevertheless, he later ac- JERZY NEYMAN 397 knowledged the influence of Bernstein from whom he "tried to acquire his tendency of concentrating on some 'big prob- lem'." It was also Bernstein who introduced him to Karl Pearson's Grammar of Science, which made a deep impres- sion. After the first World War, Poland regained its inde- pendence but soon became embroiled in a war with Russia over borders. Neyman, still in Kharkov, was jailed as an enemy alien. In 1921, in an exchange of prisoners, he finally went to Poland for the first time at the age of twenty- seven. In Warsaw he established contact with Sierpinski, one of the founders of the journal Fundamenta Mathematicae, which published one of Neyman's gold medal results (1923, vol. 5, pp. 328-30). Although Neyman's heart was in pure math- ematics, the statistics he had learned from Bernstein was more marketable and enabled him to obtain a position as (the only) statistician at the Agricultural Institute in Bydgoszcz (formerly Bromberg). There, during 1921-22, he produced several papers on the application of probabilistic ideas to agricultural experimentation. In light of Neyman's later development, this work is of interest because of its intro- duction of probability models for the phenomena being studied, particularly a randomization model for the case of a completely randomized experiment. (A key section was translated and published with an introduction by Speed and comments by Rubin in Statistical Science, vol. 5, 1990, pp. 463-80.) He had learned the philosophy of such an approach from Karl Pearson's book, where great stress is laid on models as mental constructs the formulation of which constitutes the essence of science.1 In December 1922 Neyman gave up his job in Bydgoszcz to take charge of equipment and observations at the State Meteorological Institute, a change that enabled him to move 398 BIOGRAPHICAL MEMOIRS to Warsaw. He did not like the work and soon left to become an assistant at the University of Warsaw and Spe- cial Lecturer in mathematics and statistics at the Central College of Agriculture; he also gave regular lectures at the University of Krakow. In 1924 he obtained his doctorate from the University of Warsaw with a thesis based on the papers he had written at Bydgoszcz. Since no one in Poland was able to gauge the impor- tance of his statistical work (he was "sui generis," as he later described himself), the Polish authorities provided an opportunity for him to establish his credibility through publication in British journals. For this purpose they gave him a fellowship to work with Karl Pearson in London. He did publish three papers in Biometrika (based in part on his earlier work), but scientifically the academic year (1925- 26) spent in Pearson's laboratory was a disappointment. Neyman found the work of the laboratory old-fashioned and Pearson himself surprisingly ignorant of modern math- ematics. (The fact that Pearson did not understand the difference between independence and lack of correlation led to a misunderstanding that nearly terminated Neyman's stay at the laboratory.) So when, with the help of Pearson and Sierpinski, Neyman received a Rockefeller fellowship that made it possible for him to stay in the West for an- other year, he decided to spend it in Paris rather than in London. There he attended the lectures of Lebesgue and a semi- nar of Hadamard. "I felt that this was real mathematics worth studying" he wrote later, "and, were it not for Egon Pearson, I would have probably drifted to my earlier pas- sion for sets, measure and integration, and returned to Poland as a faithful member of the Warsaw school and a steady contributor to Fundamenta Mathematicae." JERZY NEYMAN 399 THE NEWMAN-PEARSON THEORY What pulled Neyman back into statistics was a letter he received in the fall of 1926 from Egon Pearson, Karl Pearson's son, with whom Neyman had had only little contact in London. Egon had begun to question the rationale under- lying some of the current work in statistics, and the letter outlined his concerns. Correspondence developed and, re- inforced by occasional joint holidays, continued even after the end of the Rockefeller year when Neyman returned to a hectic and difficult life in Warsaw. He continued to lecture at the university (as docent after his habilitation in 1928), at the Central College of Agriculture, and at the University of Krakow. In addition, he founded a small statistical laboratory at the Nencki Institute for Experimen- tal Biology. To supplement his meager academic income, and to provide financial support for the students and young co-workers in his laboratory, he took on a variety of con- sulting jobs. These involved different areas of application, with the majority coming from agriculture and from the Institute for Social Problems, the latter work being con- cerned with Polish census data. Neyman felt harassed, and his financial situation was al- ways precarious. The bright spot in this difficult period was his work with the younger Pearson. Trying to find a unifying, logical basis that would lead systematically to the various statistical tests that had been proposed by Student and Fisher was a "big problem" of the kind for which he had hoped since his student days with Bernstein. In 1933 Karl Pearson retired from his chair at University College, London, and his position was divided between R. A. Fisher and Egon Pearson. The latter lost no time, and, as soon as it became available, in the spring of 1934 of- fered Neyman a temporary position in his laboratory. Neyman 400 BIOGRAPHICAL MEMOIRS was enthusiastic. This would greatly facilitate their joint work and bring relief to his Warsaw difficulties. The set of issues addressed in the joint work of Neyman and Pearson between 1926 and 1933 turned out indeed to be a "big problem," and their treatment of it established a new paradigm that changed the statistical landscape. What concerned Pearson when he first approached Neyman in 1926 was the ad hoc nature of the small sample tests being studied by Fisher and Student. In his search for a general principle from which such tests could be derived, he had written to Student. In his reply Student suggested that one would be inclined to reject a hypothesis under which the observed sample is very improbable, "if there is an alternative hypothesis which will explain the occurrence of the sample with a more reasonable probability" (E.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages28 Page
-
File Size-