U. S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585 Fiscal Year 2018: Second Quarter Progress Reports: Advanced Battery Materials Research (BMR) Program & Battery500 Consortium Program Released June 2018 for the period of January – March 2018 Approved by Tien Q. Duong, Program Manager Advanced Battery Materials Research Program & Battery500 Consortium Program Vehicle Technologies and Electrification Program Energy Efficiency and Renewable Energy Table of Contents TABLE OF CONTENTS A Message from the Advanced Battery Materials Research Program Manager ................................... xvi Advanced Battery Materials Research Program Task 1 – Liquid/Polymer Solid-State Electrolytes ................................................................................. 1 Task 1.1 – Advanced Lithium-Ion Battery Technology: High-Voltage Electrolyte (Joe Sunstrom, Ron Hendershot, and Alec Falzone, Daikin) ................................................... 3 Task 1.2 – Multi-Functional, Self-Healing Polyelectrolyte Gels for Long-Cycle-Life, High-Capacity Sulfur Cathodes in Lithium-Sulfur Batteries (Alex Jen and Jihui Yang, University of Washington) .............................................................. 5 Task 1.3 – Development of Ion-Conducting Inorganic Nanofibers and Polymers (Nianqiang (Nick) Wu, West Virginia University; Xiangwu Zhang, North Carolina State University) ....................................................................................................... 9 Task 1.4 – High Conductivity and Flexible Hybrid Solid-State Electrolyte (Eric Wachsman, Liangbing Hu, and Yifei Mo, University of Maryland) ............................... 12 Task 1.5 – Self-Forming Thin Interphases and Electrodes Enabling 3D Structured High-Energy-Density Batteries (Glenn Amatucci, Rutgers University) ................................. 15 Task 1.6 – Dual Function Solid-State Battery with Self-Forming, Self-Healing Electrolyte and Separator (Esther Takeuchi, Stony Brook University) .................................................... 17 Task 1.7 – High-Conductivity, Low-Temperature Polymer Electrolytes for Lithium-Ion Batteries (Bryan D. McCloskey, University of California at Berkeley) ................................... 20 Task 1.8 – Advanced Polymer for Batteries (Zhenan Bao and Yi Cui, Stanford University) ....................................................................... 23 Task 1.9 – Improving the Stability of Lithium-Metal Anodes and Inorganic-Organic Solid Electrolytes (Nitash Balsara, Lawrence Berkeley National Laboratory) ....................... 26 Task 2 – Diagnostics .......................................................................................................................... 28 Task 2.1 – Model System Diagnostics for High-Energy Cathode Development (Guoying Chen, Lawrence Berkeley National Laboratory) .................................................... 30 Task 2.2 – Interfacial Processes – Diagnostics (Robert Kostecki, Lawrence Berkeley National Laboratory) ................................................. 33 Task 2.3 – Advanced In Situ Diagnostic Techniques for Battery Materials (Xiao-Qing Yang and Seongmin Bak, Brookhaven National Laboratory) .............................. 35 Task 2.4 – Nuclear Magnetic Resonance and Magnetic Resonance Imaging Studies of Solid Electrolyte Interphase, Dendrites, and Electrode Structures (Clare Grey, University of Cambridge) .................................................................................. 38 BMR Quarterly Report ii FY 2018 ‒ Q2 (v. 2 July 2018) Table of Contents Task 2.5 – Advanced Microscopy and Spectroscopy for Probing and Optimizing Electrode-Electrolyte Interphases in High-Energy Lithium Batteries (Shirley Meng, University of California at San Diego) ........................................................... 41 Task 2.6 – In Situ Diagnostics of Coupled Electrochemical-Mechanical Properties of Solid Electrolyte Interphases on Lithium-Metal Rechargeable Batteries (Xingcheng Xiao, General Motors; Brian W. Sheldon, Brown University; Yue Qi, Michigan State University; and Y. T. Cheng, University of Kentucky) ...................... 45 Task 2.7 – Microscopy Investigation on the Fading Mechanism of Electrode Materials (Chongmin Wang, Pacific Northwest National Laboratory) .................................................. 49 Task 2.8 – Understanding and Mitigating Interfacial Reactivity between Electrode and Electrolyte (Khalil Amine and Zhonghai Chen, Argonne National Laboratory)..................... 52 Task 2.9 – Correlative Microscopy Characterization of Electrochemical Hotspots in Oxide Electrodes (Yi Cui, William Chueh, Michael Toney; Stanford/SLAC) .......................... 54 Task 3 – Modeling ............................................................................................................................. 58 Task 3.1 – Design of High-Energy, High-Voltage Lithium Batteries through First- Principles Modeling (Kristin Persson, Lawrence Berkeley National Laboratory) .................. 59 Task 3.2 – Addressing Heterogeneity in Electrode Fabrication Processes (Dean Wheeler and Brian Mazzeo, Brigham Young University) ........................................... 61 Task 3.3 – Understanding and Strategies for Controlled Interfacial Phenomena in Lithium-Ion Batteries and Beyond (Perla Balbuena and Jorge Seminario, Texas A&M University; Partha Mukherjee, Purdue University) ........................................... 64 Task 3.4 – Electrode Materials Design and Failure Prediction (Venkat Srinivasan, Argonne National Laboratory) .............................................................. 67 Task 3.5 – First-Principles Calculations of Existing and Novel Electrode Materials (Gerbrand Ceder, Lawrence Berkeley National Laboratory) ................................................ 70 Task 3.6 – Dendrite Growth Morphology Modeling in Liquid and Solid Electrolytes (Yue Qi, Michigan State University) ...................................................................................... 72 Task 3.7 – First-Principles Modeling and Design of Solid-State Interfaces for the Protection and Use of Lithium-Metal Anodes (Gerbrand Ceder, University of California at Berkeley) ............................................................................................................................... 75 Task 3.8 – Large-Scale Ab Initio Molecular Dynamics Simulations of Liquid and Solid Electrolytes (Lin-Wang Wang, Lawrence Berkeley National Laboratory) ............................. 77 Task 3.9 – In Operando Thermal Diagnostics of Electrochemical Cells (Ravi Prasher, Lawrence Berkeley National Laboratory) ...................................................... 80 Task 3.10 – Multi-Scale Modeling of Solid-State Electrolytes for Next-Generation Lithium Batteries (Anh Ngo, Larry Curtiss, and Venkat Srinivasan, Argonne National Laboratory) .............................................................................................. 82 BMR Quarterly Report iii FY 2018 ‒ Q2 (v. 2 July 2018) Table of Contents Task 4 – Metallic Lithium .................................................................................................................. 84 Task 4.1 – Lithium Dendrite Prevention for Lithium Batteries (Wu Xu and Ji-Guang Zhang, Pacific Northwest National Laboratory) ................................. 86 Task 4.2 – Self-Assembling and Self-Healing Rechargeable Lithium Batteries (Yet-Ming Chiang, Massachusetts Institute of Technology; Venkat Viswanathan, Carnegie Mellon University) ........................................................................... 89 Task 4.3 – Engineering Approaches to Dendrite-Free Lithium Anodes (Prashant Kumta, University of Pittsburgh) .......................................................................... 91 Task 4.4 – Nanoscale Interfacial Engineering for Stable Lithium-Metal Anodes (Yi Cui, Stanford University) .................................................................................................. 93 Task 4.5 – Composite Electrolytes to Stabilize Metallic Lithium Anodes (Nancy Dudney and X. Chelsea Chen, Oak Ridge National Laboratory) ............................... 96 Task 4.6 – Lithium Batteries with Higher Capacity and Voltage (John B. Goodenough, University of Texas at Austin) ........................................................... 99 Task 4.7 – Advancing Solid-State Interfaces in Lithium-Ion Batteries (Nenad Markovic and Larry A. Curtiss, Argonne National Laboratory) .............................. 101 Task 4.8 – Mechanical and Defect Properties at the Protected Lithium Interface (Nancy Dudney, Oak Ridge National Laboratory; Erik Herbert, Michigan Technological University; Jeff Sakamoto, University of Michigan) ..................................... 103 Task 5 – Sulfur Electrodes ................................................................................................................ 106 Task 5.1 – Novel Chemistry: Lithium Selenium and Selenium Sulfur Couple (Khalil Amine, Argonne National Laboratory) ..................................................................... 108 Task 5.2 – Development of High-Energy Lithium-Sulfur Batteries (Jun Liu and Dongping Lu, Pacific Northwest National Laboratory) ................................... 110 Task 5.3 – Nanostructured Design of Sulfur Cathodes for High-Energy Lithium-Sulfur Batteries (Yi Cui, Stanford University) ................................................................................. 113 Task 5.4 – Addressing Internal “Shuttle”
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages161 Page
-
File Size-