Progress Reports

Progress Reports

U. S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585 Fiscal Year 2018: Second Quarter Progress Reports: Advanced Battery Materials Research (BMR) Program & Battery500 Consortium Program Released June 2018 for the period of January – March 2018 Approved by Tien Q. Duong, Program Manager Advanced Battery Materials Research Program & Battery500 Consortium Program Vehicle Technologies and Electrification Program Energy Efficiency and Renewable Energy Table of Contents TABLE OF CONTENTS A Message from the Advanced Battery Materials Research Program Manager ................................... xvi Advanced Battery Materials Research Program Task 1 – Liquid/Polymer Solid-State Electrolytes ................................................................................. 1 Task 1.1 – Advanced Lithium-Ion Battery Technology: High-Voltage Electrolyte (Joe Sunstrom, Ron Hendershot, and Alec Falzone, Daikin) ................................................... 3 Task 1.2 – Multi-Functional, Self-Healing Polyelectrolyte Gels for Long-Cycle-Life, High-Capacity Sulfur Cathodes in Lithium-Sulfur Batteries (Alex Jen and Jihui Yang, University of Washington) .............................................................. 5 Task 1.3 – Development of Ion-Conducting Inorganic Nanofibers and Polymers (Nianqiang (Nick) Wu, West Virginia University; Xiangwu Zhang, North Carolina State University) ....................................................................................................... 9 Task 1.4 – High Conductivity and Flexible Hybrid Solid-State Electrolyte (Eric Wachsman, Liangbing Hu, and Yifei Mo, University of Maryland) ............................... 12 Task 1.5 – Self-Forming Thin Interphases and Electrodes Enabling 3D Structured High-Energy-Density Batteries (Glenn Amatucci, Rutgers University) ................................. 15 Task 1.6 – Dual Function Solid-State Battery with Self-Forming, Self-Healing Electrolyte and Separator (Esther Takeuchi, Stony Brook University) .................................................... 17 Task 1.7 – High-Conductivity, Low-Temperature Polymer Electrolytes for Lithium-Ion Batteries (Bryan D. McCloskey, University of California at Berkeley) ................................... 20 Task 1.8 – Advanced Polymer for Batteries (Zhenan Bao and Yi Cui, Stanford University) ....................................................................... 23 Task 1.9 – Improving the Stability of Lithium-Metal Anodes and Inorganic-Organic Solid Electrolytes (Nitash Balsara, Lawrence Berkeley National Laboratory) ....................... 26 Task 2 – Diagnostics .......................................................................................................................... 28 Task 2.1 – Model System Diagnostics for High-Energy Cathode Development (Guoying Chen, Lawrence Berkeley National Laboratory) .................................................... 30 Task 2.2 – Interfacial Processes – Diagnostics (Robert Kostecki, Lawrence Berkeley National Laboratory) ................................................. 33 Task 2.3 – Advanced In Situ Diagnostic Techniques for Battery Materials (Xiao-Qing Yang and Seongmin Bak, Brookhaven National Laboratory) .............................. 35 Task 2.4 – Nuclear Magnetic Resonance and Magnetic Resonance Imaging Studies of Solid Electrolyte Interphase, Dendrites, and Electrode Structures (Clare Grey, University of Cambridge) .................................................................................. 38 BMR Quarterly Report ii FY 2018 ‒ Q2 (v. 2 July 2018) Table of Contents Task 2.5 – Advanced Microscopy and Spectroscopy for Probing and Optimizing Electrode-Electrolyte Interphases in High-Energy Lithium Batteries (Shirley Meng, University of California at San Diego) ........................................................... 41 Task 2.6 – In Situ Diagnostics of Coupled Electrochemical-Mechanical Properties of Solid Electrolyte Interphases on Lithium-Metal Rechargeable Batteries (Xingcheng Xiao, General Motors; Brian W. Sheldon, Brown University; Yue Qi, Michigan State University; and Y. T. Cheng, University of Kentucky) ...................... 45 Task 2.7 – Microscopy Investigation on the Fading Mechanism of Electrode Materials (Chongmin Wang, Pacific Northwest National Laboratory) .................................................. 49 Task 2.8 – Understanding and Mitigating Interfacial Reactivity between Electrode and Electrolyte (Khalil Amine and Zhonghai Chen, Argonne National Laboratory)..................... 52 Task 2.9 – Correlative Microscopy Characterization of Electrochemical Hotspots in Oxide Electrodes (Yi Cui, William Chueh, Michael Toney; Stanford/SLAC) .......................... 54 Task 3 – Modeling ............................................................................................................................. 58 Task 3.1 – Design of High-Energy, High-Voltage Lithium Batteries through First- Principles Modeling (Kristin Persson, Lawrence Berkeley National Laboratory) .................. 59 Task 3.2 – Addressing Heterogeneity in Electrode Fabrication Processes (Dean Wheeler and Brian Mazzeo, Brigham Young University) ........................................... 61 Task 3.3 – Understanding and Strategies for Controlled Interfacial Phenomena in Lithium-Ion Batteries and Beyond (Perla Balbuena and Jorge Seminario, Texas A&M University; Partha Mukherjee, Purdue University) ........................................... 64 Task 3.4 – Electrode Materials Design and Failure Prediction (Venkat Srinivasan, Argonne National Laboratory) .............................................................. 67 Task 3.5 – First-Principles Calculations of Existing and Novel Electrode Materials (Gerbrand Ceder, Lawrence Berkeley National Laboratory) ................................................ 70 Task 3.6 – Dendrite Growth Morphology Modeling in Liquid and Solid Electrolytes (Yue Qi, Michigan State University) ...................................................................................... 72 Task 3.7 – First-Principles Modeling and Design of Solid-State Interfaces for the Protection and Use of Lithium-Metal Anodes (Gerbrand Ceder, University of California at Berkeley) ............................................................................................................................... 75 Task 3.8 – Large-Scale Ab Initio Molecular Dynamics Simulations of Liquid and Solid Electrolytes (Lin-Wang Wang, Lawrence Berkeley National Laboratory) ............................. 77 Task 3.9 – In Operando Thermal Diagnostics of Electrochemical Cells (Ravi Prasher, Lawrence Berkeley National Laboratory) ...................................................... 80 Task 3.10 – Multi-Scale Modeling of Solid-State Electrolytes for Next-Generation Lithium Batteries (Anh Ngo, Larry Curtiss, and Venkat Srinivasan, Argonne National Laboratory) .............................................................................................. 82 BMR Quarterly Report iii FY 2018 ‒ Q2 (v. 2 July 2018) Table of Contents Task 4 – Metallic Lithium .................................................................................................................. 84 Task 4.1 – Lithium Dendrite Prevention for Lithium Batteries (Wu Xu and Ji-Guang Zhang, Pacific Northwest National Laboratory) ................................. 86 Task 4.2 – Self-Assembling and Self-Healing Rechargeable Lithium Batteries (Yet-Ming Chiang, Massachusetts Institute of Technology; Venkat Viswanathan, Carnegie Mellon University) ........................................................................... 89 Task 4.3 – Engineering Approaches to Dendrite-Free Lithium Anodes (Prashant Kumta, University of Pittsburgh) .......................................................................... 91 Task 4.4 – Nanoscale Interfacial Engineering for Stable Lithium-Metal Anodes (Yi Cui, Stanford University) .................................................................................................. 93 Task 4.5 – Composite Electrolytes to Stabilize Metallic Lithium Anodes (Nancy Dudney and X. Chelsea Chen, Oak Ridge National Laboratory) ............................... 96 Task 4.6 – Lithium Batteries with Higher Capacity and Voltage (John B. Goodenough, University of Texas at Austin) ........................................................... 99 Task 4.7 – Advancing Solid-State Interfaces in Lithium-Ion Batteries (Nenad Markovic and Larry A. Curtiss, Argonne National Laboratory) .............................. 101 Task 4.8 – Mechanical and Defect Properties at the Protected Lithium Interface (Nancy Dudney, Oak Ridge National Laboratory; Erik Herbert, Michigan Technological University; Jeff Sakamoto, University of Michigan) ..................................... 103 Task 5 – Sulfur Electrodes ................................................................................................................ 106 Task 5.1 – Novel Chemistry: Lithium Selenium and Selenium Sulfur Couple (Khalil Amine, Argonne National Laboratory) ..................................................................... 108 Task 5.2 – Development of High-Energy Lithium-Sulfur Batteries (Jun Liu and Dongping Lu, Pacific Northwest National Laboratory) ................................... 110 Task 5.3 – Nanostructured Design of Sulfur Cathodes for High-Energy Lithium-Sulfur Batteries (Yi Cui, Stanford University) ................................................................................. 113 Task 5.4 – Addressing Internal “Shuttle”

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    161 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us