
TESIS DOCTORAL 2020 Strategies of development and maintenance in supervision, control, synchronization, data acquisition and processing in light sources David Fernández Carreiras Directores: José Carlos Dafonte Vázquez Bernardino Arcay Varela ii Declaración de autoría Yo, David Fernández Carreiras declaro que la Tesis titulada “Strategies of development and maintenance in supervision, control, synchronization, data acquisition and processing in light sources” y el trabajo presentado en la misma es original. El doctor José Carlos Dafonte Vázquez, Profesor Titular en el Área de Ciencia de la Computación e Inteligencia Artificial de la Universidade da Coruña, y el doctor Bernardino Arcay Varela , catedrático en el Área de Ciencia de la Computación e Inteligencia Artificial de la Universidade da Coruña hacen constar que la Tesis titulada ”Strategies of development and maintenance in supervision, control, synchronization, data acquisition and processing in light sources" ha sido realizada por David Fernández Carreiras, bajo nuestra dirección, en el Departamento de Ciencias de la Computación y Tecnologías de la Información de la Universidade da Coruña y constituye la Tesis que presenta para optar al grado de Doctor en Informática de la Universidade da Coruña. Firmado: David Fernández Carreiras Firmado: José Carlos Dafonte Vázquez Firmado: Bernardino Arcay Varela iii ACKNOWLEDGMENTS The design, installation and operation of the supervision control and data acquisition systems, is a complex endeavor requiring a number of engineers working in collaborations between different institutes. This work studies different cases in particular at ALBA, and the ESRF, the institutes where I got most of my experience across the last twenty years. I would like to thank all people I had the opportunity to work with. In particular, I would like to thank Jörg Klora, head of the Beamline Instrumentation Software Support group at the ESRF until 2004 and head of the Computing and Controls division at ALBA until 2013. His help, trust, mentoring and knowledge of the field of control systems, detectors and experimental stations have been decisive for my professional development and for the success of projects like Sardana[1:1]. I would like to thank also all members of the Beamline Instrumentation Software Support group at the ESRF and the Computing division at ALBA, with a particular emphasis on Controls and Electronics sections. Among these, I would like to highlight: Alejandro Homs, for his wisdom and advises on a wide field and in particular for his extraordinary generosity, Manuel Pérez and Vicente Rey for their continuous support from the personal and professional points of view, Darren Spruce, Andy Götz, Tiago Coutinho (Sardana, Taurus), Guifré Cuní (Motion Control, Sardana), Sergi Rubio (archiving, alarm handling), Zbigniew Reszela (Sardana and continuous scans), Carlos Pascual (Taurus), Fulvio Becheri, Alberto Rubio, Jairo Moldes (Fast Orbit Feedback), Sergi Blanch and Oscar Matilla (Electronics, timing and detectors, besides many other subjects). I would like also to thank Salvador Ferrer and Dieter Einfeld, heads of the Experiments and Accelerators divisions during the construction of ALBA, for their constant feedback and day- to-day interactions, inputs and advises. Gastón García and Alejandro Sánchez as project managers and with coordination and quality assurance roles during the construction, Joan Bordas and Caterina Biscari, directors of ALBA in the different phases of the project and Ramon Pascual, the President of the Consortium. I would also like to thank the controls groups of other synchrotrons such as MAXIV in Sweden, PetraIII at DESY in Germany, Diamond in the U.K., Elettra in Italy, Soleil in France and Australian Synchrotron for the exchange of experiences in the past years. Finally, I would also like to express my gratitude to José Carlos Dafonte and Bernardino Arcay with whom I started to collaborate more than twenty years ago, to work with me in this challenging undertaking. iv RESUMO Os aceleradores de partículas e fontes de luz sincrotrón, evolucionan constantemente para estar na vangarda da tecnoloxía, levando os límites cada vez mais lonxe para explorar novos dominios e universos. Os sistemas de control son unha parte crucial desas instalacións científicas e buscan logra-la flexibilidade de manobra para poder facer experimentos moi variados, con configuracións diferentes que engloban moitos tipos de detectores, procedementos, mostras a estudar e contornas. As propostas de experimento son cada vez máis ambiciosas e van sempre un paso por diante do establecido. Precísanse detectores cada volta máis rápidos e eficientes, con máis ancho de banda e con máis resolución. Tamén é importante a operación simultánea de varios detectores tanto escalares como mono ou bidimensionáis, con mecanismos de sincronización de precisión que integren as singularidades de cada un. Este traballo estuda as solucións existentes no campo dos sistemas de control e adquisición de datos nos aceleradores de partículas e fontes de luz e raios X, ó tempo que explora novos requisitos e retos no que respecta á sincronización e velocidade de adquisición de datos para novos experimentos, a optimización do deseño, soporte, xestión de servizos e custos de operación. Tamén se estudan diferentes solucións adaptadas a cada contorna. v RESUMEN Los aceleradores de partículas y fuentes de luz sincrotrón, evolucionan constantemente para estar en la vanguardia de la tecnología, y poder explorar nuevos dominios. Los sistemas de control son una parte fundamental de esas instalaciones científicas y buscan lograr la máxima flexibilidad para poder llevar a cabo experimentos más variados, con configuraciones diferentes que engloban varios tipos de detectores, procedimientos, muestras a estudiar y entornos. Los experimentos se proponen cada vez más ambiciosos y en ocasiones más allá de los límites establecidos. Se necesitan detectores cada vez más rápidos y eficientes, con más resolución y ancho de banda, que puedan sincronizarse simultáneamente con otros detectores tanto escalares como mono y bidimensionales, integrando las singularidades de cada uno y homogeneizando la adquisición de datos. Este trabajo estudia los sistemas de control y adquisición de datos de aceleradores de partículas y fuentes de luz y rayos X, y explora nuevos requisitos y retos en lo que respecta a la sincronización y velocidad de adquisición de datos, optimización y costo-eficiencia en el diseño, operación soporte, mantenimiento y gestión de servicios. También se estudian diferentes soluciones adaptadas a cada entorno. vi ABSTRACT Particle accelerators and photon sources are constantly evolving, attaining the cutting-edge technologies to push the limits forward and explore new domains. The control systems are a crucial part of these installations and are required to provide flexible solutions to the new challenging experiments, with different kinds of detectors, setups, sample environments and procedures. Experiment proposals are more and more ambitious at each call and go often a step beyond the capabilities of the instrumentation. Detectors shall be faster, with higher efficiency, more resolution, more bandwidth and able to synchronize with other detectors of all kinds; scalars, one or two-dimensional, taking into account their singularities and homogenizing the data acquisition. This work examines the control and data acquisition systems for particle accelerators and X- ray / light sources and explores new requirements and challenges regarding synchronization and data acquisition bandwidth, optimization and cost-efficiency in the design / operation / support. It also studies different solutions depending on the environment. vii PROLOGUE The particle accelerators and photon sources are constantly evolving, attaining the cutting-edge technologies to push the limits forward and explore new domains. The control systems are a crucial part of these installations and are required to give solutions for the new challenging requirements. One of the essential undertakings is reaching the flexibility that allows making experiments very different from each other involving numerous types of setups, detectors, sample environments, and procedures. The data acquisition techniques have remarkably fast evolved and progressed in the last years. However, the proposals for experiments are more ambitious at each call and go often a step forward from the instrumentation available. The detectors shall be faster and more efficient, with higher bandwidth and resolution, which require a more accurate synchronization with other detectors of all kinds; scalars, one or two-dimensional, different energies, resolutions, spectroscopy, etc. The acquisition is often combined with complex motion trajectories of one or several motorized elements and with specific control of the sample environments. The control and data acquisition systems need to integrate this complexity for managing appropriately the data collection. The data formats must also handle this difficulty and foresee metadata for the corresponding data reduction and data analysis. The return of investment to the society is an important factor that tackles a very tight budget control in terms of construction, installation and operation. The number of large installations is growing fast but with restrictions in budgets and an increasing competition with other facilities, which empowers imperative efforts improving the efficiency, and reducing the operational and maintenance
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages212 Page
-
File Size-