Neutron Detection

Neutron Detection

Neutron Detection J.L. Tain [email protected] http://ific.uv.es/gamma/ Instituto de Física Corpuscular C.S.I.C - Univ. Valencia Neutrons Particle Properties 2004 • Proposed: E. Rutherford, 1920 • Discovery: J. Chadwick, 1932 • Neutron reactions: E. Fermi and others, 1934-1935 • Compound nucleus model: N. Bohr, G. Breit-E. Wigner,1936 • Neutrons in astrophysics: G. Gamow, 1937 • Neutron induced fission: O. Hahn, F. Strassmann, L. Meitner, O. Frisch, 1939 • Chain reaction: E. Fermi, 1942 Neutron reactions ✦ Reaction channels: • elastic scattering: (n,n) n A • inelastic scattering: (n,n’γ) Z • radiative capture: (n,γ) • multiplication: (n,xnγ) • charged particle σ 1/v resonances continuum production: (n,pγ), (n,αγ), … log • fission: (n,xnA1Z1A2Z2) • … σtot = σel + σcap + … ✦ No Coulomb barrier ✦ Reaction thresholds log En ✦ Energy dependence ✦ No predictive models Common reactions used for neutron detection at low energies: Elastic scattering: • n + 1H → n + 1H • n + 2H → n + 2H (abund.=0.015%) Charged particle: • n + 3He → 3H + 1H + 0.764 MeV (abund.=0.00014%) • n + 6Li → 4He + 3H + 4.79 MeV (abund.=7.5%) • n + 10B → 7Li* + 4He→ 7Li + 4He + 0.48 MeV γ +2.3 MeV (abund.=19.9%, b.r.=93%) Radiative capture: • n + 155Gd → 156Gd* → γ-ray + CE spectrum (abund.=14.8%) • n + 157Gd → 158Gd* → γ-ray + CE spectrum (abund.=15.7%) Fission: • n + 235U → fission fragments + ~160 MeV • n + 239Pu → fission fragments + ~160 MeV • n + 238U → fission fragments + ~160 MeV charged particles Cross section energy dependence of useful reactions radiative capture fission elastic scattering Cross section energy dependence of moderators inelastic scattering radiative capture Neutron detectors: Counters (only Physical form: identification): • Gas: ionization and • Moderated proportional chambers • Not moderated • Liquid: scintillators • Solid: scintillators, Spectrometers (energy semiconductor determination): • Recoil Active material: • Charged particle • Self-detecting reaction • Loaded • Time of Flight • Lined • Slowing down Miscellanea of detectors: • Li glass scintillator: Li2O + SiO2 +… • Li crystal scintillator: LiI(Eu), LiF • Li + ZnS(Ag) scintillator • Li + thermo-luminiscent material • Gd crystal scintillators: Gd2O2S(Pr),… • BAs semiconductor Gas-filled chamber 3He(n,p)3H response Gases: H recoil response • H2 (recoil) 2 • 3He (reaction) • 4He (recoil) • BF3 (reaction) Efficiency 3He chambers NIMA422 (1999) 69 Response 3He(n,p)T NIM144 (1977) 253 MC simulation Response thermal En=2.4MeV 3He(n,n)3He Foil with deposit + Si-detector • Reaction: n + 6Li → t + α Si Si Si Si 200µg/cm2 on 3µm Mylar NIMA517 (2004) 389 Neutron scattering s-wave (l=0) elastic scattering: Energy-momentum conservation: n A Isotropic in CMS: There is a minimum neutron energy (maximum recoil energy) after the collision dependent on A: min 1-α: H (1.0), D(0.89), C(0.28), Fe(0.069), Pb(0.019) 1H 2H ELASTIC SCATTERING ANGULAR DISTRIBUTION 12C 208Pb BC501/NE213 liquid scintillators 5∅×5cm C1H1.212 ρ = 0.874g/cm3 n (@425nm) = 1.53 τ = 3.2 (32.3, 270) ns NIMA476 (02) 132 Mono-energetic neutron response 25∅×5cm Monte Carlo simulations of neutron interactions and detectors • Birth of modern MC approach • General purpose codes: MCNP, GEANT, … and specific codes: NRESP, SCINFUL, … • Requires nuclear reaction data • May require material response (light production, …) Luminescence in organic materials The non-radiative transfer mechanism between excited centers induces an energy-loss dependent light production … dE S dL = dx dx dE 1+ kB … and a varying time distribution dx Several time components (10x10cm) Simulation with GEANT3/GCALOR BC501/NE213 Pulse Shape Discrimination Pulse-shape particle dependence Multi-detector: Neutron Wall (EUROBALL) BC501 liquid scintillator ΔΩ = 25 % 4π ε int = 50 % Time of Flight Spectrometer start stop 2 1 L E = m L n 2 n t2 Start Time: time-pulsed origin, accompanying radiation, … (not the neutron) Stop Time: neutron detector 2 2 ΔE ⎛ ΔL ⎞ ⎛ Δt ⎞ Energy resolution: = 2 ⎜ ⎟ + ⎜ ⎟ E ⎝ L ⎠ ⎝ t ⎠ ✦ Long flight path, short detectors, good time resolution ToF spectrometer: MoNA (NSCL-Michigan) 144 bars 200x10x10 cm3 plastic scintillators+ iron converters MC simulation Efficiency ToF spectrometer: TONERRE (LPC-Caen) Experimental setup at ISOLDE BC400 Plastic scintillator ΔΩ = 50 % 4π ε int = 25 % ΔE =10 % E NIMA 455 (2000) 412 Neutron moderation: After many collisions: No se puede mostrar la imagen. Puede que su equipo no tenga suficiente memoria para abrir la imagen o que ésta esté dañada. Reinicie el equipo y, a continuación, abra el archivo de nuevo. Si sigue apareciendo la x roja, puede que tenga que borrar la imagen e insertarla de nuevo. N Nucleus 1-α ξ (1MeV→ 25 meV) 1H 1 1 18 Slowing-down parameter: E (A-1)2 A-1 2H 0.889 0.725 24 ξ = ln 0 = 1+ ln E 2A A +1 4He 0.640 0.425 41 Number of collisions to 12C 0.284 0.158 111 reach an energy: 56Fe 0.069 0.035 500 lnE E N = 0 f 208Pb 0.019 0.010 1823 ξ K Slowing-down time: t - t = 0 : K(ξ,σela ); t0 (E0 ,ξ,σela ) Ef Slowing Down Spectrometer: LSDS (LANL-Los Alamos) Lead block + sample+counters K ΔE E = 2 = 30 % (t + t0 ) E Time-energy relation MC simulation Bonner spheres: NEMUS (PTB-Braunschweig) Polyethylene sphere + 3He proportional counter NIMA476 (2002) 36 Monte Carlo simulations of neutron detectors 0.5 Normalized MCNP 90o 1964 1980 1964 1981 ) 2 1977 1982 m 1979 1988 c 0.1 ( e s n 0.05 o p s e R e c n e u 0.01 l F MC simulation 0.005 10-2 10-1 100 101 102 103 104 105 106 107 108 Neutron Energy (eV) … allow to obtain spectrometric information Deconvolution (unfolding): Given the response of an apparatus as a function of a parameter, what is the distribution of parameter values which produces a measured data distribution? d R p ; d R p , i Inverse (linear) problem: = ⋅ i = ∑ ij ⋅ j ∀ j Solution is NOT: p = R−1 ⋅d Use statistical inference: • not-unique solution (σd) • “a priori” information • several methods: Linear regularization (LR): p = (R + λH)−1 ⋅d ⎛ 1 Rij ⎛ ⎞⎞ p(m+1) p(m) exp⎜ d R p(m) ⎟ Maximum Entropy (ME): j = j ⎜ ∑ 2 ⎜ i − ∑ ik k ⎟⎟ ⎝ λ i σ i ⎝ k ⎠⎠ 1 R p(m)d Expectation Maximization (EM): d (m+1) = ij j i j R ∑ R p(m) ∑ ij i ∑ ik k i k Deconvolution Bonner spheres measurements MC simulation Response Data MAXED Result The Long Counter Uni-directional, flat-efficiency Moderator+shielding +BF3 MC simulation NIMA452 (2000) 470 Moderated cylindrical array: NERO (NSCL-Michigan) Polyethylene block (60x60x80cm3) 3 16 He and 44 BF3 proportional counters ε = 40 % Berlin Neutron Ball 1.5 m3 0.4% Gd-loaded liquid scintillator NIMA508 (2003) 295 Efficiency MC simulation Moderation time Fission chamber: NIMA336 (1993) 226 U, Pu + gas chamber -HV n 235U α FF .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    34 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us