
<p>Math 221: LINEAR ALGEBRA </p><p><strong>Chapter 8. Orthogonality </strong><br><strong>§8-3. Positive Definite Matrices </strong></p><p>Le Chen<sup style="top: -0.3013em;">1 </sup></p><p>Emory University, 2020 Fall </p><p><strong>(last updated on 11/10/2020) </strong></p><p>Creative Commons License <br>(CC BY-NC-SA) </p><p>1</p><p>Slides are adapted from those by Karen Seyffarth from University of Calgary. </p><p>Positive Definite Matrices Cholesky factorization – Square Root of a Matrix </p><p>Positive Definite Matrices </p><p>Definition </p><p>An n × n matrix A is positive definite if it is symmetric and has positive eigenvalues, i.e., if λ is a eigenvalue of A, then λ > 0. </p><p>Theorem </p><p>If A is a positive definite matrix, then det(A) > 0 and A is invertible. </p><p>Proof. </p><p>Let λ<sub style="top: 0.083em;">1</sub>, λ<sub style="top: 0.083em;">2</sub>, . . . , λ<sub style="top: 0.083em;">n </sub>denote the (not necessarily distinct) eigenvalues of A. Since A is symmetric, A is orthogonally diagonalizable. In particular, A ∼ D, where D = diag(λ<sub style="top: 0.083em;">1</sub>, λ<sub style="top: 0.083em;">2</sub>, . . . , λ<sub style="top: 0.083em;">n</sub>). Similar matrices have the same determinant, so </p><p>det(A) = det(D) = λ<sub style="top: 0.083em;">1</sub>λ<sub style="top: 0.083em;">2 </sub>· · · λ<sub style="top: 0.083em;">n</sub>. </p><p>Since A is positive definite, λ<sub style="top: 0.083em;">i </sub>> 0 for all i, 1 ≤ i ≤ n; it follows that det(A) > 0, and therefore A is invertible. </p><p>ꢀ</p><p>Theorem </p><p>A symmetric matrix A is positive definite if and only if ~x<sup style="top: -0.3174em;">T</sup>A~x > 0 for all </p><p>n</p><p>~</p><p>~x ∈ R , ~x = 0. </p><p>Proof. </p><p>Since A is symmetric, there exists an orthogonal matrix P so that </p><p>P<sup style="top: -0.3589em;">T</sup>AP = diag(λ<sub style="top: 0.083em;">1</sub>, λ<sub style="top: 0.083em;">2</sub>, . . . , λ<sub style="top: 0.083em;">n</sub>) = D, </p><p>where λ<sub style="top: 0.083em;">1</sub>, λ<sub style="top: 0.083em;">2</sub>, . . . , λ<sub style="top: 0.083em;">n </sub>are the (not necessarily distinct) eigenvalues of A. Let </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">T</li></ul><p></p><p>~</p><p>~x ∈ R , ~x = 0, and define ~y = P ~x. Then <br>~x<sup style="top: -0.3589em;">T</sup>A~x = ~x<sup style="top: -0.3589em;">T</sup>(PDP<sup style="top: -0.3589em;">T</sup>)~x = (~x<sup style="top: -0.3589em;">T</sup>P)D(P<sup style="top: -0.3589em;">T</sup>~x) = (P<sup style="top: -0.3589em;">T</sup>~x)<sup style="top: -0.3589em;">T</sup>D(P<sup style="top: -0.3589em;">T</sup>~x) = ~y<sup style="top: -0.3589em;">T</sup>D~y. </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>Writing ~y<sup style="top: -0.3174em;">T </sup></p><p>=</p><p>y<sub style="top: 0.0831em;">1 </sub>y<sub style="top: 0.0831em;">2 </sub>· · · y<sub style="top: 0.0831em;">n </sub></p><p>,</p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p>y<sub style="top: 0.083em;">1 </sub>y<sub style="top: 0.083em;">2 </sub></p><p><br></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>~x<sup style="top: -0.3589em;">T</sup>A~x </p><p>==</p><p>y<sub style="top: 0.083em;">1 </sub>y<sub style="top: 0.083em;">2 </sub>· · · y<sub style="top: 0.083em;">n </sub>diag(λ , λ , . . . , λ ) </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p>n</p><p>...</p><p>y<sub style="top: 0.083em;">n </sub></p><p>λ<sub style="top: 0.083em;">1</sub>y<sub style="top: 0.1315em;">1</sub><sup style="top: -0.3589em;">2 </sup>+ λ<sub style="top: 0.083em;">2</sub>y<sub style="top: 0.1315em;">2</sub><sup style="top: -0.3589em;">2 </sup>+ · · · λ<sub style="top: 0.083em;">n</sub>y<sub style="top: 0.1315em;">n</sub><sup style="top: -0.3589em;">2</sup>. </p><p>Proof. (continued) </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">T</li></ul><p></p><p>~</p><p>(⇒) Suppose A is positive definite, and ~x ∈ R , ~x = 0. Since P is </p><p>T</p><p>2</p><p>~</p><p>invertible, ~y = P ~x = 0, and thus y<sub style="top: 0.083em;">j </sub>= 0 for some j, implying y<sub style="top: 0.1471em;">j </sub>> 0 for some j. Furthermore, since all eigenvalues of A are positive, λ<sub style="top: 0.083em;">i</sub>y<sub style="top: 0.1471em;">i</sub><sup style="top: -0.3174em;">2 </sup>≥ 0 for all i; in particular λ<sub style="top: 0.0831em;">j</sub>y<sub style="top: 0.1471em;">j</sub><sup style="top: -0.3174em;">2 </sup>> 0. Therefore, ~x<sup style="top: -0.3174em;">T</sup>A~x > 0. </p><p>T</p><p>~</p><p>(⇐) Conversely, if ~x A~x > 0 whenever ~x = 0, choose ~x = P~e<sub style="top: 0.083em;">j</sub>, where ~e<sub style="top: 0.083em;">j </sub>is th </p><p>~</p><p>the j column of I<sub style="top: 0.083em;">n</sub>. Since P is invertible, ~x = 0, and thus <br>~y = P<sup style="top: -0.3589em;">T</sup>~x = P<sup style="top: -0.3589em;">T</sup>(P~e<sub style="top: 0.083em;">j</sub>) = ~e<sub style="top: 0.083em;">j</sub>. <br>Thus y<sub style="top: 0.0831em;">j </sub>= 1 and y<sub style="top: 0.0831em;">i </sub>= 0 when i = j, so </p><p>λ<sub style="top: 0.083em;">1</sub>y<sub style="top: 0.1314em;">1</sub><sup style="top: -0.359em;">2 </sup>+ λ<sub style="top: 0.083em;">2</sub>y<sub style="top: 0.1314em;">2</sub><sup style="top: -0.359em;">2 </sup>+ · · · λ<sub style="top: 0.083em;">n</sub>y<sub style="top: 0.1314em;">n</sub><sup style="top: -0.359em;">2 </sup>= λ<sub style="top: 0.083em;">j</sub>, </p><p>i.e., λ<sub style="top: 0.083em;">j </sub>= ~x<sup style="top: -0.3174em;">T</sup>A~x > 0. Therefore, A is positive definite. </p><p>ꢀ</p><p>Theorem (Constructing Positive Definite Matrices) </p><p>Let U be an n × n invertible matrix, and let A = U<sup style="top: -0.3174em;">T</sup>U. Then A is positive definite. </p><p>Proof. </p><p>n</p><p>~</p><p>Let ~x ∈ R , ~x = 0. Then <br>~x<sup style="top: -0.359em;">T</sup>A~x </p><p>====</p><p>~x<sup style="top: -0.359em;">T</sup>(U<sup style="top: -0.359em;">T</sup>U)~x </p><p>(~x<sup style="top: -0.3589em;">T</sup>U<sup style="top: -0.3589em;">T</sup>)(U~x) (U~x)<sup style="top: -0.3589em;">T</sup>(U~x) </p><p>2</p><p>||U~x|| . </p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">~</li><li style="flex:1">~</li></ul><p></p><p>Since U is invertible and ~x = 0, U~x = 0, and hence ||U~x|| > 0, i.e., ~x<sup style="top: -0.3174em;">T</sup>A~x = ||U~x|| > 0. Therefore, A is positive definite. </p><p>ꢀ</p><p>2</p><p>Definition </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>Let A = a<sub style="top: 0.083em;">ij </sub>be an n × n matrix. For 1 ≤ r ≤ n, <sup style="top: -0.3174em;">(r)</sup>A denotes the r × r submatrix in the upper left corner of A, i.e., </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p><sup style="top: -0.359em;">(r)</sup>A = a<sub style="top: 0.083em;">ij </sub>, 1 ≤ i, j ≤ r. <br><sup style="top: -0.3174em;">(1)</sup>A, <sup style="top: -0.3174em;">(2)</sup>A, . . . , <sup style="top: -0.3174em;">(n)</sup>A are called the principal submatrices of A. </p><p>Lemma </p><p>If A is an n × n positive definite matrix, then each principal submatrix of A is positive definite. </p><p>Proof. </p><p>Suppose A is an n × n positive definite matrix. For any integer r, 1 ≤ r ≤ n, write A in block form as </p><p></p><ul style="display: flex;"><li style="flex:1">ꢂ</li><li style="flex:1">ꢃ</li></ul><p></p><p><sup style="top: -0.3174em;">(r)</sup>A </p><p>C<br>BD<br>A = </p><p>,</p><p>where B is an r × (n − r) matrix, C is an (n − r) × r matrix, and D is an </p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p>y<sub style="top: 0.083em;">1 </sub></p><p> y<sub style="top: 0.0816em;">2 </sub><br></p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p>y<sub style="top: 0.0831em;">1 </sub>y<sub style="top: 0.0831em;">2 </sub></p><p>.</p><p></p><p>.</p><p></p><p>.</p><p><br><br></p><p>~</p><p></p><ul style="display: flex;"><li style="flex:1">(n − r) × (n − r) matrix. Let ~y = </li><li style="flex:1">= 0 and let ~x = </li><li style="flex:1">y<sub style="top: 0.083em;">r </sub>. Then </li></ul><p>...</p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p>0</p><p>...</p><p><br></p><p>y<sub style="top: 0.083em;">r </sub></p><p>0</p><p>T</p><p>~</p><p>~x = 0, and by the previous theorem, ~x A~x > 0. </p><p>Proof. (continued) </p><p>But </p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p>y<sub style="top: 0.083em;">1 </sub></p><p>...</p><p><br></p><ul style="display: flex;"><li style="flex:1">ꢂ</li><li style="flex:1">ꢃ</li></ul><p></p><ul style="display: flex;"><li style="flex:1">ꢄ</li><li style="flex:1">ꢅ</li></ul><p></p><p><sup style="top: -0.3174em;">(r)</sup>A </p><p>C<br>BD</p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>y<sub style="top: 0.083em;">r </sub></p><p>0</p><p>...</p><p>0</p><p>T</p><p>~x<sup style="top: -0.3589em;">T</sup>A~x = y<sub style="top: 0.0831em;">1 </sub>· · · y<sub style="top: 0.0831em;">r </sub></p><p>0</p><p>· · · </p><p>0</p><p>= ~y <sup style="top: -0.3589em;">(r)</sup>A ~y, </p><p><br></p><p></p><ul style="display: flex;"><li style="flex:1">ꢄ</li><li style="flex:1">ꢅ</li></ul><p></p><p>and therefore ~y<sup style="top: -0.3174em;">T (r)</sup>A ~y > 0. Then <sup style="top: -0.3174em;">(r)</sup>A is positive definite again by the previous theorem. </p><p>ꢀ</p><p>Cholesky factorization – Square Root of a Matrix </p><p>4 = 2 × 2<sup style="top: -0.359em;">T </sup></p><p><br><br><br> <br></p><p>412 <br>12 37 <br>−16 −43 <br>98 <br>26<br>−8 <br>015<br>003<br>200<br>610<br>−8 <br>53<br>=<br>−16 −43 </p><p>Theorem </p><p>Let A be an n × n symmetric matrix. Then the following conditions are equivalent. </p><p>1. A is positive definite. </p><p>2. det(<sup style="top: -0.3174em;">(r)</sup>A) > 0 for r = 1, 2, . . . , n. </p><p>3. A = U<sup style="top: -0.3174em;">T</sup>U where U is upper triangular and has positive entries on its main diagonal. Furthermore, U is unique. The expression A = U<sup style="top: -0.3174em;">T</sup>U is </p><p>called the Cholesky factorization of A. </p><p>Algorithm for Cholesky Factorization </p><p>Let A be a positive definite matrix. The Cholesky factorization A = U<sup style="top: -0.3174em;">T</sup>U can be obtained as follows. </p><p>1. Using only type 3 elementary row operations, with multiples of rows added to lower rows, put A in upper triangular form. Call this matrix </p><p></p><ul style="display: flex;"><li style="flex:1">b</li><li style="flex:1">b</li></ul><p></p><p>U; then U has positive entries on its main diagonal (this can be proved by induction on n). </p><p></p><ul style="display: flex;"><li style="flex:1">b</li><li style="flex:1">b</li></ul><p></p><p>2. Obtain U from U by dividing each row of U by the square root of the diagonal entry in that row. </p><p>Problem </p><p><br></p><p>9<br>−6 <br>3<br>−6 <br>5<br>−3 <br>3<br>−3 <br>6</p><p></p><ul style="display: flex;"><li style="flex:1">Show that A = </li><li style="flex:1">is positive definite, and find the </li></ul><p>Cholesky factorization of A. </p><p>Solution </p><p></p><ul style="display: flex;"><li style="flex:1">ꢂ</li><li style="flex:1">ꢃ</li></ul><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>9<br>−6 <br>−6 </p><p><sup style="top: -0.3589em;">(1)</sup>A = </p><p>9</p><p>and <sup style="top: -0.3589em;">(2)</sup>A = </p><p>,</p><p>5</p><p>so det(<sup style="top: -0.3174em;">(1)</sup>A) = 9 and det(<sup style="top: -0.3174em;">(2)</sup>A) = 9. Since det(A) = 36, it follows that A is positive definite. </p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li><li style="flex:1"></li><li style="flex:1"></li><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p>9<br>−6 <br>3<br>−6 <br>5<br>−3 <br>3<br>−3 <br>6<br>900<br>−6 <br>1<br>−1 <br>3<br>−1 <br>5<br>900<br>−6 <br>10<br>3<br>−1 <br>4</p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li><li style="flex:1"></li><li style="flex:1"></li><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">→</li></ul><p></p><p>Now divide the entries in each row by the square root of the diagonal entry in that row, to give </p><p><br></p><p>300<br>−2 <br>10<br>1<br>−1 <br>2</p><p></p><ul style="display: flex;"><li style="flex:1">U = </li><li style="flex:1">and U<sup style="top: -0.359em;">T</sup>U = A. </li></ul><p></p><p>ꢀ</p><p>Problem </p><p>Verify that </p><p><br></p><p>12 <br>43<br>42<br>−1 <br>3<br>−1 <br>7</p><p>A = is positive definite, and find the Cholesky factorization of A. </p><p>Solution ( Final Answer ) </p><p></p><ul style="display: flex;"><li style="flex:1">ꢄ</li><li style="flex:1">ꢅ</li><li style="flex:1">ꢄ</li><li style="flex:1">ꢅ</li></ul><p></p><p>det <sup style="top: -0.3174em;">(1)</sup>A = 12, det <sup style="top: -0.3174em;">(2)</sup>A = 8, det (A) = 2; by the previous theorem, A is positive definite. </p><p></p><ul style="display: flex;"><li style="flex:1">√</li><li style="flex:1">√</li></ul><p>√<br>√</p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">3</li></ul><p>00</p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">3/3 </li></ul><p>6/3 <br>0<br>3/2 </p><p>√</p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p>U = </p><p>−</p><p>6<br>1/2 </p><p>and U<sup style="top: -0.3174em;">T</sup>U = A. </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages13 Page
-
File Size-