Math 221: LINEAR ALGEBRA

Math 221: LINEAR ALGEBRA

<p>Math 221: LINEAR ALGEBRA </p><p><strong>Chapter 8. Orthogonality </strong><br><strong>§8-3. Positive Definite Matrices </strong></p><p>Le Chen<sup style="top: -0.3013em;">1 </sup></p><p>Emory University, 2020 Fall </p><p><strong>(last updated on 11/10/2020) </strong></p><p>Creative Commons License <br>(CC BY-NC-SA) </p><p>1</p><p>Slides are adapted from those by Karen Seyffarth from University of Calgary. </p><p>Positive Definite Matrices Cholesky factorization – Square Root of a Matrix </p><p>Positive Definite Matrices </p><p>Definition </p><p>An n × n matrix A is positive definite if it is symmetric and has positive eigenvalues, i.e., if λ is a eigenvalue of A, then λ &gt; 0. </p><p>Theorem </p><p>If A is a positive definite matrix, then det(A) &gt; 0 and A is invertible. </p><p>Proof. </p><p>Let λ<sub style="top: 0.083em;">1</sub>, λ<sub style="top: 0.083em;">2</sub>, . . . , λ<sub style="top: 0.083em;">n </sub>denote the (not necessarily distinct) eigenvalues of A. Since A is symmetric, A is orthogonally diagonalizable. In particular, A ∼ D, where D = diag(λ<sub style="top: 0.083em;">1</sub>, λ<sub style="top: 0.083em;">2</sub>, . . . , λ<sub style="top: 0.083em;">n</sub>). Similar matrices have the same determinant, so </p><p>det(A) = det(D) = λ<sub style="top: 0.083em;">1</sub>λ<sub style="top: 0.083em;">2 </sub>· · · λ<sub style="top: 0.083em;">n</sub>. </p><p>Since A is positive definite, λ<sub style="top: 0.083em;">i </sub>&gt; 0 for all i, 1 ≤ i ≤ n; it follows that det(A) &gt; 0, and therefore A is invertible. </p><p>ꢀ</p><p>Theorem </p><p>A symmetric matrix A is positive definite if and only if ~x<sup style="top: -0.3174em;">T</sup>A~x &gt; 0 for all </p><p>n</p><p>~</p><p>~x ∈ R , ~x = 0. </p><p>Proof. </p><p>Since A is symmetric, there exists an orthogonal matrix P so that </p><p>P<sup style="top: -0.3589em;">T</sup>AP = diag(λ<sub style="top: 0.083em;">1</sub>, λ<sub style="top: 0.083em;">2</sub>, . . . , λ<sub style="top: 0.083em;">n</sub>) = D, </p><p>where λ<sub style="top: 0.083em;">1</sub>, λ<sub style="top: 0.083em;">2</sub>, . . . , λ<sub style="top: 0.083em;">n </sub>are the (not necessarily distinct) eigenvalues of A. Let </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">T</li></ul><p></p><p>~</p><p>~x ∈ R , ~x = 0, and define ~y = P ~x. Then <br>~x<sup style="top: -0.3589em;">T</sup>A~x = ~x<sup style="top: -0.3589em;">T</sup>(PDP<sup style="top: -0.3589em;">T</sup>)~x = (~x<sup style="top: -0.3589em;">T</sup>P)D(P<sup style="top: -0.3589em;">T</sup>~x) = (P<sup style="top: -0.3589em;">T</sup>~x)<sup style="top: -0.3589em;">T</sup>D(P<sup style="top: -0.3589em;">T</sup>~x) = ~y<sup style="top: -0.3589em;">T</sup>D~y. </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>Writing ~y<sup style="top: -0.3174em;">T </sup></p><p>=</p><p>y<sub style="top: 0.0831em;">1 </sub>y<sub style="top: 0.0831em;">2 </sub>· · ·&nbsp;y<sub style="top: 0.0831em;">n </sub></p><p>,</p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p>y<sub style="top: 0.083em;">1 </sub>y<sub style="top: 0.083em;">2 </sub></p><p><br></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>~x<sup style="top: -0.3589em;">T</sup>A~x </p><p>==</p><p>y<sub style="top: 0.083em;">1 </sub>y<sub style="top: 0.083em;">2 </sub>· · ·&nbsp;y<sub style="top: 0.083em;">n </sub>diag(λ ,&nbsp;λ ,&nbsp;. . . , λ&nbsp;) </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p>n</p><p>...</p><p>y<sub style="top: 0.083em;">n </sub></p><p>λ<sub style="top: 0.083em;">1</sub>y<sub style="top: 0.1315em;">1</sub><sup style="top: -0.3589em;">2 </sup>+ λ<sub style="top: 0.083em;">2</sub>y<sub style="top: 0.1315em;">2</sub><sup style="top: -0.3589em;">2 </sup>+ · · · λ<sub style="top: 0.083em;">n</sub>y<sub style="top: 0.1315em;">n</sub><sup style="top: -0.3589em;">2</sup>. </p><p>Proof. (continued) </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">T</li></ul><p></p><p>~</p><p>(⇒) Suppose A is positive definite, and ~x ∈ R , ~x = 0. Since P&nbsp;is </p><p>T</p><p>2</p><p>~</p><p>invertible, ~y = P ~x = 0, and thus y<sub style="top: 0.083em;">j </sub>= 0 for some j, implying y<sub style="top: 0.1471em;">j </sub>&gt; 0 for some j. Furthermore, since all eigenvalues of A are positive, λ<sub style="top: 0.083em;">i</sub>y<sub style="top: 0.1471em;">i</sub><sup style="top: -0.3174em;">2 </sup>≥ 0 for all i; in particular λ<sub style="top: 0.0831em;">j</sub>y<sub style="top: 0.1471em;">j</sub><sup style="top: -0.3174em;">2 </sup>&gt; 0. Therefore,&nbsp;~x<sup style="top: -0.3174em;">T</sup>A~x &gt; 0. </p><p>T</p><p>~</p><p>(⇐) Conversely, if ~x A~x &gt; 0 whenever ~x = 0, choose ~x = P~e<sub style="top: 0.083em;">j</sub>, where ~e<sub style="top: 0.083em;">j </sub>is th </p><p>~</p><p>the j&nbsp;column of I<sub style="top: 0.083em;">n</sub>. Since P is invertible, ~x = 0, and thus <br>~y = P<sup style="top: -0.3589em;">T</sup>~x = P<sup style="top: -0.3589em;">T</sup>(P~e<sub style="top: 0.083em;">j</sub>) = ~e<sub style="top: 0.083em;">j</sub>. <br>Thus y<sub style="top: 0.0831em;">j </sub>= 1 and y<sub style="top: 0.0831em;">i </sub>= 0 when i = j, so </p><p>λ<sub style="top: 0.083em;">1</sub>y<sub style="top: 0.1314em;">1</sub><sup style="top: -0.359em;">2 </sup>+ λ<sub style="top: 0.083em;">2</sub>y<sub style="top: 0.1314em;">2</sub><sup style="top: -0.359em;">2 </sup>+ · · · λ<sub style="top: 0.083em;">n</sub>y<sub style="top: 0.1314em;">n</sub><sup style="top: -0.359em;">2 </sup>= λ<sub style="top: 0.083em;">j</sub>, </p><p>i.e., λ<sub style="top: 0.083em;">j </sub>= ~x<sup style="top: -0.3174em;">T</sup>A~x &gt; 0. Therefore, A is positive definite. </p><p>ꢀ</p><p>Theorem (Constructing Positive Definite Matrices) </p><p>Let U be an n × n invertible matrix, and let A = U<sup style="top: -0.3174em;">T</sup>U. Then A is positive definite. </p><p>Proof. </p><p>n</p><p>~</p><p>Let ~x ∈ R , ~x = 0. Then <br>~x<sup style="top: -0.359em;">T</sup>A~x </p><p>====</p><p>~x<sup style="top: -0.359em;">T</sup>(U<sup style="top: -0.359em;">T</sup>U)~x </p><p>(~x<sup style="top: -0.3589em;">T</sup>U<sup style="top: -0.3589em;">T</sup>)(U~x) (U~x)<sup style="top: -0.3589em;">T</sup>(U~x) </p><p>2</p><p>||U~x|| . </p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">~</li><li style="flex:1">~</li></ul><p></p><p>Since U is invertible and ~x = 0, U~x = 0, and hence ||U~x|| &gt; 0, i.e., ~x<sup style="top: -0.3174em;">T</sup>A~x = ||U~x|| &gt; 0. Therefore, A is positive definite. </p><p>ꢀ</p><p>2</p><p>Definition </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>Let A = a<sub style="top: 0.083em;">ij </sub>be an n × n matrix. For 1 ≤ r ≤ n, <sup style="top: -0.3174em;">(r)</sup>A denotes the r × r submatrix in the upper left corner of A, i.e., </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p><sup style="top: -0.359em;">(r)</sup>A = a<sub style="top: 0.083em;">ij </sub>, 1 ≤ i, j ≤ r. <br><sup style="top: -0.3174em;">(1)</sup>A, <sup style="top: -0.3174em;">(2)</sup>A, . . . ,&nbsp;<sup style="top: -0.3174em;">(n)</sup>A are called the principal submatrices of A. </p><p>Lemma </p><p>If A is an n × n positive definite matrix, then each principal submatrix of A is positive definite. </p><p>Proof. </p><p>Suppose A is an n × n positive definite matrix. For any integer r, 1 ≤ r ≤ n, write A in block form as </p><p></p><ul style="display: flex;"><li style="flex:1">ꢂ</li><li style="flex:1">ꢃ</li></ul><p></p><p><sup style="top: -0.3174em;">(r)</sup>A </p><p>C<br>BD<br>A = </p><p>,</p><p>where B is an r × (n − r) matrix, C is an (n − r) × r matrix, and D is an </p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p>y<sub style="top: 0.083em;">1 </sub></p><p> y<sub style="top: 0.0816em;">2 </sub><br></p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p>y<sub style="top: 0.0831em;">1 </sub>y<sub style="top: 0.0831em;">2 </sub></p><p>.</p><p></p><p>.</p><p></p><p>.</p><p><br><br></p><p>~</p><p></p><ul style="display: flex;"><li style="flex:1">(n − r) × (n − r) matrix. Let&nbsp;~y = </li><li style="flex:1">= 0 and let ~x = </li><li style="flex:1">y<sub style="top: 0.083em;">r </sub>. Then </li></ul><p>...</p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p>0</p><p>...</p><p><br></p><p>y<sub style="top: 0.083em;">r </sub></p><p>0</p><p>T</p><p>~</p><p>~x = 0, and by the previous theorem, ~x A~x &gt; 0. </p><p>Proof. (continued) </p><p>But </p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p>y<sub style="top: 0.083em;">1 </sub></p><p>...</p><p><br></p><ul style="display: flex;"><li style="flex:1">ꢂ</li><li style="flex:1">ꢃ</li></ul><p></p><ul style="display: flex;"><li style="flex:1">ꢄ</li><li style="flex:1">ꢅ</li></ul><p></p><p><sup style="top: -0.3174em;">(r)</sup>A </p><p>C<br>BD</p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>y<sub style="top: 0.083em;">r </sub></p><p>0</p><p>...</p><p>0</p><p>T</p><p>~x<sup style="top: -0.3589em;">T</sup>A~x = y<sub style="top: 0.0831em;">1 </sub>· · ·&nbsp;y<sub style="top: 0.0831em;">r </sub></p><p>0</p><p>· · · </p><p>0</p><p>= ~y <sup style="top: -0.3589em;">(r)</sup>A ~y, </p><p><br></p><p></p><ul style="display: flex;"><li style="flex:1">ꢄ</li><li style="flex:1">ꢅ</li></ul><p></p><p>and therefore ~y<sup style="top: -0.3174em;">T (r)</sup>A ~y &gt; 0. Then <sup style="top: -0.3174em;">(r)</sup>A is positive definite again by the previous theorem. </p><p>ꢀ</p><p>Cholesky factorization – Square Root of a Matrix </p><p>4 = 2 × 2<sup style="top: -0.359em;">T </sup></p><p><br><br><br>    <br></p><p>412 <br>12 37 <br>−16 −43 <br>98 <br>26<br>−8 <br>015<br>003<br>200<br>610<br>−8 <br>53<br>=<br>−16 −43 </p><p>Theorem </p><p>Let A be an n × n symmetric matrix. Then the following conditions are equivalent. </p><p>1. A is positive definite. </p><p>2. det(<sup style="top: -0.3174em;">(r)</sup>A) &gt; 0 for r = 1, 2, . . . , n. </p><p>3. A = U<sup style="top: -0.3174em;">T</sup>U where U is upper triangular and has positive entries on its main diagonal. Furthermore, U is unique. The expression A = U<sup style="top: -0.3174em;">T</sup>U is </p><p>called the Cholesky factorization of A. </p><p>Algorithm for Cholesky Factorization </p><p>Let A be a positive definite matrix. The Cholesky factorization A = U<sup style="top: -0.3174em;">T</sup>U can be obtained as follows. </p><p>1. Using only type 3 elementary row operations, with multiples of rows added to lower rows, put A in upper triangular form. Call this matrix </p><p></p><ul style="display: flex;"><li style="flex:1">b</li><li style="flex:1">b</li></ul><p></p><p>U; then U has positive entries on its main diagonal (this can be proved by induction on n). </p><p></p><ul style="display: flex;"><li style="flex:1">b</li><li style="flex:1">b</li></ul><p></p><p>2. Obtain U from U by dividing each row of U by the square root of the diagonal entry in that row. </p><p>Problem </p><p><br></p><p>9<br>−6 <br>3<br>−6 <br>5<br>−3 <br>3<br>−3 <br>6</p><p></p><ul style="display: flex;"><li style="flex:1">Show that A = </li><li style="flex:1">is positive definite, and find the </li></ul><p>Cholesky factorization of A. </p><p>Solution </p><p></p><ul style="display: flex;"><li style="flex:1">ꢂ</li><li style="flex:1">ꢃ</li></ul><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>9<br>−6 <br>−6 </p><p><sup style="top: -0.3589em;">(1)</sup>A = </p><p>9</p><p>and <sup style="top: -0.3589em;">(2)</sup>A = </p><p>,</p><p>5</p><p>so det(<sup style="top: -0.3174em;">(1)</sup>A) = 9 and det(<sup style="top: -0.3174em;">(2)</sup>A) = 9. Since det(A) = 36, it follows that A is positive definite. </p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li><li style="flex:1"></li><li style="flex:1"></li><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p>9<br>−6 <br>3<br>−6 <br>5<br>−3 <br>3<br>−3 <br>6<br>900<br>−6 <br>1<br>−1 <br>3<br>−1 <br>5<br>900<br>−6 <br>10<br>3<br>−1 <br>4</p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li><li style="flex:1"></li><li style="flex:1"></li><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">→</li><li style="flex:1">→</li></ul><p></p><p>Now divide the entries in each row by the square root of the diagonal entry in that row, to give </p><p><br></p><p>300<br>−2 <br>10<br>1<br>−1 <br>2</p><p></p><ul style="display: flex;"><li style="flex:1">U = </li><li style="flex:1">and U<sup style="top: -0.359em;">T</sup>U = A. </li></ul><p></p><p>ꢀ</p><p>Problem </p><p>Verify that </p><p><br></p><p>12 <br>43<br>42<br>−1 <br>3<br>−1 <br>7</p><p>A = is positive definite, and find the Cholesky factorization of A. </p><p>Solution ( Final Answer ) </p><p></p><ul style="display: flex;"><li style="flex:1">ꢄ</li><li style="flex:1">ꢅ</li><li style="flex:1">ꢄ</li><li style="flex:1">ꢅ</li></ul><p></p><p>det <sup style="top: -0.3174em;">(1)</sup>A = 12, det <sup style="top: -0.3174em;">(2)</sup>A = 8, det (A) = 2; by the previous theorem, A is positive definite. </p><p></p><ul style="display: flex;"><li style="flex:1">√</li><li style="flex:1">√</li></ul><p>√<br>√</p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">3</li></ul><p>00</p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">3/3 </li></ul><p>6/3 <br>0<br>3/2 </p><p>√</p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p>U = </p><p>−</p><p>6<br>1/2 </p><p>and U<sup style="top: -0.3174em;">T</sup>U = A. </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    13 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us