Optimal Distance Labeling Scheme for Interval and Circular-Arc Graphs

Optimal Distance Labeling Scheme for Interval and Circular-Arc Graphs

Optimal Distance Labeling Scheme for Interval and Circular-arc Graphs C. Gavoille LaBRI, University Bordeaux I C. Paul CNRS - LIRMM, University of Montpellier II 1 Graph Representations How to encode informations about a graph G in such a way that an oracle is able to answer queries on that graph? Examples of queries : adjacency, connectivity, distance, rout- ing, connectivity . Type of representation: centralized, distributed or mixed Evaluation: a tradeoff between • Space: number of bits needed • Times: complexity to answer queries and to compute the labels (usually the WORD-RAM model is used) 2 Labeling Schemes Let Q be a type of queries (adjacency, distance,. ). For a family F of graphs, a Q-labeling scheme is a pair of func- tions hL, fi such that: • L(v,G) is a binary label associated to vertex v in graph G • f(L(x,G), L(y,G)) is a decoder function that answer the querie bewteen x and y in graph G The labeling scheme is said a l(n)-Q labeling scheme if for every n-vertex graph G ∈ F, the length of the labels is bounded by l(n) bits. 3 Adjacency vs. Distance Labeling Schemes Implicit graph conjecture [Kannan, Naor & Rudich 1992] Any hereditary family F containing no more than 2n.k(n) graphs of n vertices enjoys a O(k(n))-adjacency labeling scheme. 2 log n-adjacency labeling scheme Example of trees 2 ( O(log n)-distance labeling scheme Question: does there exists a non-trivial family of graphs (large enough) for which the distance can be encoded within the same order of space than the adjacency? 4 Interval Graphs A graph is an interval graph if it is the intersection graph of a family of intervals on the real line. g i e i c f j b d f j a d g k b h a c e h k Interval graphs enjoys a 2 log n-adjacency labeling scheme : any vertex x stores its left and right boundaries r(x),l(x) [Katz, Katz & Peleg 2000] The family of interval graphs en- joys an O(log2 n)-distance labeling scheme (DLS for short) 5 Optimal Distance Labeling Schemes An interval graph is proper iff there exists a layout without any interval inclusion. Theorem 1 [Gavoille & Paul 2003] • n vertex proper interval graphs enjoys a 2 dlog ne-DLS; • n vertex interval graphs enjoys a 3 + 5 dlog n)e-DLS; • n vertex circular-arc graphs enjoys a O(log n)-DLS. The distance decoder has constant time decoder and given the sorted list of intervals, the labels can be computed in O(n) time. 6 Layer Partition Let [x0,...xk] be the base-path where x0 has r(x) minimum and ∀i> 0, xi ∈ N(xi−1) such that r(xi) is maximum e i a f i c f j b d g j a d g k b h c e h k V1 V2 V3 V4 The layer partition V1,...Vk is defined by Vi = {v|l(v) < l(xi−1)}\ 06j<i Vj with V0 = ∅ S 7 Graph of Errors Let λ(x) be the integer such that x ∈ Vλ(x) and let H be the digraph on V composed of the arcs xy such that λ(x) < λ(y) and (x,y) ∈ E The graph of errors is the transitive closure Ht of H, let t adjHt(x,y)=1 iff xy is an arc of H 8 Theorem 2 For all distinct vertices x, y such that λ(x) 6 λ(y), distG(x,y)= λ(y) − λ(x) + 1 − adjHt(x,y) Theorem 3 There exists a linear ordering π of the vertices, con- structible in O(n) time, such that adjHt(x,y) = 1 iff λ(x) < λ(y) and π(x) >π(y) π is the pop ordering of a DFS on H using l(x) as a priority rule. The label of the vertex x is L(x,G)= hλ(x),π(x)i 9 An Example e i a f i c f j b d g j a d g k b h c e h k vertex a b c d e f g h i j k λ 1 1 1 2 2 3 3 3 4 4 4 π Stack: a 10 An Example e i a f i c f j b d g j a d g k b h c e h k vertex a b c d e f g h i j k λ 1 1 1 2 2 3 3 3 4 4 4 π 1 Stack: /a 11 An Example e i a f i c f j b d g j a d g k b h c e h k vertex a b c d e f g h i j k λ 1 1 1 2 2 3 3 3 4 4 4 π 1 Stack: /a b 12 An Example e i a f i c f j b d g j a d g k b h c e h k vertex a b c d e f g h i j k λ 1 1 1 2 2 3 3 3 4 4 4 π 1 Stack: /a b d 13 An Example e i a f i c f j b d g j a d g k b h c e h k vertex a b c d e f g h i j k λ 1 1 1 2 2 3 3 3 4 4 4 π 1 Stack: /a b d f 14 An Example e i a f i c f j b d g j a d g k b h c e h k vertex a b c d e f g h i j k λ 1 1 1 2 2 3 3 3 4 4 4 π 1 Stack: /a bdfi 15 An Example e i a f i c f j b d g j a d g k b h c e h k vertex a b c d e f g h i j k λ 1 1 1 2 2 3 3 3 4 4 4 π 1 2 Stack: /a b d f /i 16 An Example e i a fi c f j b d g j a d g k b h c e h k vertex a b c d e f g h i j k λ 1 1 1 2 2 3 3 3 4 4 4 π 1 3 2 Stack: /a b d /f /i 17 An Example e i a f i c f j b d g j a d g k b h c e h k vertex a b c d e f g h i j k λ 1 1 1 2 2 3 3 3 4 4 4 π 1 4 3 2 Stack: /a b /d /f /i 18 An Example e i a f i c f j b d g j a d g k b h c e h k vertex a b c d e f g h i j k λ 1 1 1 2 2 3 3 3 4 4 4 π 1 5 4 3 2 Stack: /a /b /d /f /i 19 An Example e i a f i c f j b d g j a d g k b h c e h k vertex a b c d e f g h i j k λ 1 1 1 2 2 3 3 3 4 4 4 π 1 5 4 3 2 Stack: /a /b /d /f /i c 20 An Example e i a f i c f j b d g j a d g k b h c e h k vertex a b c d e f g h i j k λ 1 1 1 2 2 3 3 3 4 4 4 π 1 5 4 3 2 Stack: /a /b /d /f /i c e 21 An Example e i a f i c f j b d g j a d g k b h c e h k vertex a b c d e f g h i j k λ 1 1 1 2 2 3 3 3 4 4 4 π 1 5 4 3 2 Stack: /a /b /d /f /i c e g 22 An Example e i a f i c f j b d g j a d g k b h c e h k vertex a b c d e f g h i j k λ 1 1 1 2 2 3 3 3 4 4 4 π 1 5 4 3 2 Stack: /a /b /d /f /i cegj 23 An Example e i a f i c f j b d g j a d g k b h c e h k vertex a b c d e f g h i j k λ 1 1 1 2 2 3 3 3 4 4 4 π 1 5 4 3 2 6 Stack: /a /b /d /f /i c e g /j 24 An Example e i a f i c f j b d g j a d g k b h c e h k vertex a b c d e f g h i j k λ 1 1 1 2 2 3 3 3 4 4 4 π 1 5 4 3 7 2 6 Stack: /a /b /d /f /i c e /g /j 25 An Example e i a f i c f j b d g j a d g k b h c e h k vertex a b c d e f g h i j k λ 1 1 1 2 2 3 3 3 4 4 4 π 1 5 4 3 7 2 6 Stack: /a /b /d /f /i c e /g /j h 26 An Example e i a f i c f j b d g j a d g k b h c e h k vertex a b c d e f g h i j k λ 1 1 1 2 2 3 3 3 4 4 4 π 1 5 4 3 7 2 6 Stack: /a /b /d /f /i c e /g /j h k 27 An Example e i a f i c f j b d g j a d g k b h c e h k vertex a b c d e f g h i j k λ 1 1 1 2 2 3 3 3 4 4 4 π 1 5 4 3 7 2 6 8 Stack: /a /b /d /f /i c e /g /j h /k 28 An Example e i a f i c f j b d g j a d g k b h c e h k vertex a b c d e f g h i j k λ 1 1 1 2 2 3 3 3 4 4 4 π 1 5 4 8 3 7 9 2 6 8 Stack: /a /b /d /f /i c e /g /j /h/k 29 An Example e i a f i c f j b d g j a d g k b h c e h k vertex a b c d e f g h i j k λ 1 1 1 2 2 3 3 3 4 4 4 π 1 5 4 10 3 7 9 2 6 8 Stack: /a /b /d /f /i c /e /g /j /h/k 30 An Example e i a f i c f j b d g j a d g k b h c e h k vertex a b c d e f g h i j k λ 1 1 1 2 2 3 3 3 4 4 4 π 1 5 11 4 10 3 7 9 2 6 8 Stack: /a /b /d /f /i /c /e /g /j /h /k 31 An Example e i a f i c f j b d g j a d g k b h c e h k vertex a b c d e f g h i j k λ 1 1 1 2 2 3 3 3 4 4 4 π 1 5 11 4 10 3 7 9 2 6 8 dist(b, i)= λ(i) − λ(b) + 1 − adjHt(b, i) = 4 − 1 + 1 − 1 = 3 dist(d, k)= λ(k) − λ(d) + 1 − adjHt(d, k) = 4 − 2 + 1 − 0 = 3 32 Result for proper interval graphs Theorem 4 The family of n-vertex proper interval graphs enjoys a distance labeling scheme using labels of length 2 dlog ne bits and the distance decoder has a O(1) time complexity.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    39 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us