An Asymptotic Behavior of QR Decomposition and Its Extension In

An Asymptotic Behavior of QR Decomposition and Its Extension In

An asymptotic behavior of QR decomposition and its extension in semisimple Lie group. Tin-Yau Tam http://www.auburn.edu/»tamtiny Auburn University (Joint work with Huajun Huang) 1 I. QR decomposition A = n £ n nonsingular matrix: A = QR where ¤ Q Q = In;R upper ¢; +ve diag entries Remark: The factorization is unique. QR = Gram-Schmidt orthogonalization on the columns of A In matrix form, the algorithm goes: ¡1 AR1R2 ¢ ¢ ¢ Rn = Q; R = (R1R2 ¢ ¢ ¢ Rn) where R1;:::;Rn are upper triangular Gram-Schmidt as Triangular Orthogonalization 2 ² Some variants: A = R1Q1;R1 upper ¢ A = L2Q2;L2 lower ¢ Gram-Schmidt on the rows of A ² Disadvantage of Gram-Schmidt Sensitive to rounding error (orthogonality of the computed vectors can be lost quickly or may even be completely lost) ! modi¯ed Gram-Schmidt. 3 Example: 0 1 1 + ² 1 1 A = @ 1 1 + ² 1 A 1 1 1 + ² with very small ² such that 3 + 2² will be computed accurately but 3 + 2² + ²2 will be computed as 3 + 2². Then 0 1 p1+² p¡1 p¡1 B 3+2² 2 2C p 1 p1 0 Q ¼ @ 3+2² 2 A p 1 0 p1 3+2² 2 and cos θ12 = cos θ13 ¼ ¼=2 but cos θ23 ¼ 2¼=3. Remark: Gram-Schmidt resurfaces in some recent arti- cles, especially regarding its usefulness because it takes advantage of BLAS2 4 Computing QR by Householder reflections A Householder reflection is a reflection about some hy- perplane: T Qv = I ¡ 2vv ; kvk = 1: Qv sends v to ¡v and ¯xes pointwise the hyperplane that ? to v. Write A = [a1j ¢ ¢ ¢ jan] Set u T u = a1 ¡ ka1ke1; v = ;Q1 = I ¡ 2vv : kuk 5 Then 2 3 ka1k ¤ ::: ¤ 6 0 7 Q1A = 6 . 7 4 . A1 5 0 After t iterations of this process, t · n, R = Qt ¢ ¢ ¢ Q2Q1A is upper ¢. So, with Q = Q1Q2 ¢ ¢ ¢ Qt A = QR is a QR decomposition of A. This Householder approach is known as orthogonal tri- angularization Remark: This method has greater numerical stability than Gram-Schmidt. Backward stable. 6 Computing QR by Givens rotations ² A Givens rotation is simply a rotation · ¸ cos θ ¡ sin θ R(θ) = sin θ cos θ rotates x 2 R2 by θ. ² Choose θ 2 R so that · ¸ · ¸ " q # cos θ ¡ sin θ x x2 + x2 i = i j ; sin θ cos θ xj 0 x ¡x cos θ = q i ; sin θ = q j : 2 2 2 2 xi + xj xi + xj 7 ² Zero things bottom-up and left-right. 2 3 2 3 £ £ £ £ £ £ (2; 3) (1; 2) A = 4 £ £ £ 5 4 x x x 5 ! ! £ £ £ 0 x x 2 3 2 3 x x x £ £ £ (2; 3) (2; 3) 4 0 x x 5 4 x x 5 R ! ! £ £ 0 x 8 II. QR iterations Computing the eigenvalues of nonsingular A: De¯ne a sequence fAkgk2N of matrices with A1 := A and Aj+1 := RjQj if Aj = QjRj; j = 1; 2;::: Notice that ¡1 Aj+1 = Qj AjQj: (1) Similarity ! the eigenvalues of A are ¯xed in the process, counting multiplicities. One hopes to have some sort of convergence on the sequence fAkgk2N so that the \limit" would provide the eigenvalues of A. 9 Theorem 1. (Classical) Suppose that the moduli of the eigenvalues ¸1; : : : ; ¸n of A 2 GLn(C) are distinct: j¸1j > j¸2j > ¢ ¢ ¢ > j¸nj (> 0): (2) Let ¡1 A = Y diag (¸1; : : : ; ¸n)Y: Assume Y = LU; where L is lower ¢ and U is unit upper ¢. Then the strictly lower triangular part of Ak converges to zero and diag Ak ! diag (¸1; : : : ; ¸n) Remark: In the proof the QR decomposition of Am plays a role. 10 Basic QR algorithm 1. Turn A into Hessenberg form H via orthogonal sim- ilarity by Householder reflections. (Hp ¢ ¢ ¢ H2H1)A(H1H2 ¢ ¢ ¢ Hp) = H where 0 1 ¤ ¤ ¢ ¢ ¢ ¤ B¤ ¤ ¤ ¢ ¢ ¢ ¤C B C B ¤ ¤ ¤ ¢ ¢ ¢ ¤C H = B C B C @ ... ... ¤A ¤ ¤ 2. Perform QR iterations of H. Hi+1 inherits the Hessenberg shape of Hi. 11 Theorem 2. Same assumption as in the previous theo- rem. Let ! be the permutation matrix uniquely deter- mined by Y = L!U; where L is unit lower triangular and U is upper triangular. 1. The strictly lower triangular part of Ak converges to zero. 2. diag Ak ! diag (¸!(1); ¢ ¢ ¢ ; ¸!(n)) Remark: The decomposition A = L!U for nonsingular A is due to Gelfand and Naimark (1950) Remark: QR iteration to compute eigenvalues is due to Francis (1961) 12 III. a-component and numerical ex- periment Recall QR decomposition A = QR Set a(A) = diag (a1(A); : : : ; an(A)) =: diag (r11; : : : ; rnn) where written in column form A = [a1j ¢ ¢ ¢ jan] Geometric interpretation of a(A): rii is the distance between ai and the span of a1; : : : ; ai¡1, i = 2; : : : ; n. 13 Computing the discrepancy between a(Am)1=m and j¸j of randomly generated A. Example: 2 3 ¡13 + 52i ¡40 ¡ 64i 4 ¡ 50i ¡82 ¡ 59i 6 36 + 7i ¡55 ¡ 42i ¡94 + 5i ¡51 + 16i 7 A = : 4 ¡30 ¡ 18i ¡73 + 57i ¡64 ¡ 97i ¡14 + 91i 5 ¡48 ¡ 88i 80 ¡ 99i ¡87 ¡ 45i 76 + 43i j¸(A)j = (194:6; 158:3; 144:0; 24:64): Use MATLAB to plot the graph (Figure 1) of m 1=m ka(A ) ¡ diag (j¸1j;:::; j¸nj)k2 versus m (m = 1;:::; 100): 14 100 70 60 80 50 40 60 30 40 20 10 20 0 20 40 60 80 100 0 20 40 60 80 100 Figure 1 Figure 2 If we consider m 1=m ja1(X ) ¡ j¸1jj for the above example, in contrast to Figure 1, conver- gence occurs (Figure 2) using floating point: 15 More numerical experiments Let us do some computer generated pictures m 1=m Examine [a1(A )] ¡ j¸1(A)j qr large rand(6,10,100)) m 1=m and [an(A )] ¡ j¸n(A)j qr small rand(6,10,100) What is your conjecture? 16 IV. An asymptotic result Theorem 3. A; X; B = nonsingular matrices. Let X = Y ¡1DY be the Jordan decomposition of X, where D is the Jordan form of X, diag D = diag (¸1; : : : ; ¸n) satisfying j¸1j ¸ ¢ ¢ ¢ ¸ j¸nj: Then m 1=m lim a(AX B) = diag (j¸!(1)j;:::; j¸!(n)j); m!1 where the permutation ! is uniquely determined by YB = L!U: rank !(ijj) = rank YB(ijj); 1 · i; j · n: 1 Remark: There is no convergence of the sequence fQmgm=1, for example, if h i 0 1 A = B := I2;X := 1 0 ; 1 then fQmgm=1 = fX; I2; X; I2;::: g does not converge. 17 (1=m) 1 Example: fjRmj gm=1 may not converge. Let · ¸ 1 1 A := I ;X := ;B := I : 2 0 ¡1 2 Then ½ X; m odd AXmB = I2; m even. and · ¸ 1 1 jR j(1=(2m+1)) = ; 2m+1 0 1 · ¸ 1 0 jR j(1=(2m)) = : 2m 0 1 18 Example: (Even it converges...) Let 1 > a > b > 0 and 2 3 2 3 2 3 1 0 0 1 0 0 0 0 1 A := I3;X := 4 0 a 0 5 ;B := 4 1 1 0 5 4 1 0 0 5 : 0 0 b 2 1 1 0 1 0 By direct computation 2 p 3 a2m + b2m p b2m pa2m+2b2m 6 a2m+b2m a2m+b2m 7 ambm ambm jRmj = 6 0 p p 7 : 4 a2m+b2m a2m+b2m 5 0 0 1 So 2 3 a b2=a a (1=m) lim jRmj = 4 0 b b 5 ; m!1 0 0 1 (m) 1=m 2 and limm!1 jr12 j = b =a, which is not an eigenvalue modulus of X. 19 VI Extension to Iwasawa compo- nent G = connected semisimple Lie group. Iwasawa decomposition of G: G = KAN For g 2 G, write g = kan where k 2 K, a 2 A, n 2 N are uniquely de¯ned. Example: For G = SL(n; C), or SL(n; R), QR ! Iwasawa decomposition k = Q; a = diag R; n = a¡1R 20 Example: The symplectic group µ ¶ T 0 In Spn(R) = fg 2 GL2n(R): g Jng = Jng;J = : ¡In 0 The Iwasawa decomposition G1 = K1A1N1: µ ¶ AB K = f : A + iB 2 U(n)g; 1 ¡BA ¡1 ¡1 A1 = fµdiag (a1; : : : ;¶ an; a1 ; : : : ; an ): a1; : : : ; an > 0g; AB N = f : A unit upper¢; ABT = BT Ag: 1 0 (A¡1)T It is not the Iwasawa decomposition of g = kan 2 SL2n(R); k 2 SO(2n), a +ve diagonal, and n unit upper triangular. 21 Iwasawa decomposition ² g = Lie algebra of connected semisimple G. ² g = k + p a ¯xed Cartan decomposition of g ² K ½ G the connected subgroup with Lie algebra k. ² a ½ p a maximal abelian subspace. ² Fix a closed Weyl chamber a+ in a Set A := exp a;A := exp a + P + N := exp n; n := ®>0 g®; n is the sum of all positive root spaces. Iwasawa decomposition: G = KAN 22 Example: A 2 sl(n; C) has Hermitian decomposition: A = (A ¡ A¤)=2 + (A + A¤)=2: It is a Cartan decomposition for sl(n; C) sl(n; C) = k + p = su(n) + isu(n) where k = su(n) is the algebra of all trace 0 skew Her- mitian matrices and p = isu(n) is the space of all trace 0 Hermitian matrices. K = SU(n) the special unitary group. Pick a = fdiag (a1; : : : ; an): a1 + ¢ ¢ ¢ + an = 0g; a maximal abelian subspace in p. a+ = fdiag (a1; : : : ; an): a1 ¸ ¢ ¢ ¢ ¸ an; a1 + ¢ ¢ ¢ + an = 0g a closed Weyl chamber of a. A+ = fdiag (a1; : : : ; an): a1 ¢ ¢ ¢ an = 1g ½ SLn(C).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    29 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us