(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 30 April 2009 (30.04.2009) WO 2009/055128 A2 (51) International Patent Classification: (74) Agents: GORDON, Dana, M. et al.; Patent Group, Fo AOlN 37/10 (2006.01) ley Hoag LLP, 155 Seaport Boulevard, Boston, MA 02210 (US). (21) International Application Number: PCT/US2008/073460 (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (22) International Filing Date: 18 August 2008 (18.08.2008) AO, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, (25) Filing Language: English EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, (26) Publication Language: English MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,TJ, (30) Priority Data: TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 60/956,517 17 August 2007 (17.08.2007) US ZW (71) Applicant (for all designated States except US): MASS¬ (84) Designated States (unless otherwise indicated, for every ACHUSETTS INSTITUTE OF TECHNOLOGY kind of regional protection available): ARIPO (BW, GH, [US/US]; 77 Massachusetts Avenue, Cambridge, MA GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, 02139 (US). ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, (72) Inventors; and FR, GB, GR, HR, HU, IE, IS, IT, LT,LU, LV,MC, MT, NL, (75) Inventors/Applicants (for US only): HATTON, T., Alan NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, [ZA/US]; 20 Willard Grant Road, Sudbury, MA 01776 CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). (US). BROMBERG, Lev, E. [US/US]; 15 Sherwood Road, Swampscott, MA 01907 (US). ZHANG, Huan Published: [CN/US]; 540 Memorial Drive, Apartment 1604, Cam — without international search report and to be republished bridge, MA 02139 (US). upon receipt of that report (54) Title: COMPOSITIONS FOR CHEMICAL AND BIOLOGICAL DEFENSE, AND METHODS RELATED THERETO (57) Abstract: One aspect of the present invention relates to reactive compositions and methods of use thereof, wherein a metal oxide cluster is used to connect a reactive group (or groups) to the surface of a substrate. In certain embodiments, the reactive group in the compositions decomposes organophosphate agents through nucleophilic hydrolysis. In certain embodiments, the reactive group in the compositions is bactericidal. Remarkably, the use of metal oxide clusters in the disclosed compositions and methods permits incorporation of higher quantities of nucleophilic and bactericidal groups without the difficulties associated with having to pretreat the substrate prior to its association with the reactive groups. Compositions For Chemical and Biological Defense, and Methods Related Thereto RELATED APPLICATIONS This application claims the benefit of priority to United States Provisional Patent Application serial number 60/956,517, filed August 17, 2007. GOVERNMENT SUPPORT This work was sponsored by the Department of the Army, U.S. Army Research Office, under grant W91 1NF-07-1-0139. XPS utilization was supported by the MRSEC Program of the National Science Foundation under award number DMR 02-13282. BACKGROUND OF THE INVENTION The presence of organophosphate esters (OPEs) in industrial and agricultural drain waters, spills, runoffs, and drifts, as well as OPE agent-based chemical munitions that may be released during warfare or a terrorist attack, poses great risks to human health and the environment. The worldwide number of exposures to OPEs in pesticides and insecticides is estimated at some 3,000,000 per year; the resulting total number of deaths and casualties is estimated at over 300,000 per year. Eyer, P. "The role of oximes in the management of organophosphor us pesticide poisoning," ToxicolRev. 2003, 22(3), 165-190. Numerous OPE-based pesticides, insecticides and warfare agents, such as sarin, soman, and VX, in addition to being carcinogenic, act as nerve poisons which may cause cumulative damage to the nervous system and liver. The primary mechanism of action of the OPEs is irreversible inhibition of acetylcholinesterases, essential enzymes for breaking down acetylcholine and maintaining normal nerve function, resulting in the accumulation of the neurotransmitter acetylcholine at nerve synapses. Structures of the nerve poison sarin and a model analogue used in this study, diisopropyl fluorophosphate (DFP), are given in Figure 1. The acute toxicity of various pentavalent organophosphor us (OP) compounds toward living species has resulted in the widespread use of phosphoric, thiophosphoric, and phosphonothioic acid derivatives as biocides for animal and crop protection as well as in the development of chemical weapons of mass destruction. Quin, L. D. A Guide to Organophosphor us Chemistry; Wiley: New York, 2000; Compton, J. A. Military Chemical and Biological Agents; Telford Press: NJ, 1997; p 135; Gallo, M. A.; Lawryk, N. J. Organic Phosphorus Pesticides. The Handbook of Pesticide Toxicology; Academic Press: San Diego, CA, 1991; Sultatos, L. G., J. Toxicol. Environ. Health, 1994, 43(3), 271-289; Morales-Rojas, H.; Moss, R. A., Chem. Rev, 2002, 102(1), 2497-2522. Development of an economical strategy for dealing with possible OP contamination is critical. Some of the first OPE-decontaminating agents were oxidizers, such as bleaching powders. See Yang, Y. C. et al. "Decontamination of chemical warfare agents," Chem. Rev. 1992, 92(8), 1729-1743. However, the activity of bleaches decreases upon long-term storage; therefore, to have the desired effect, copious amounts of bleach must be used. Moreover, because bleaches are corrosive, they are not compatible with many surfaces. At present, the decontamination solutions of choice are DS-2 (a non-aqueous liquid composed of diethylenetriamine, ethylene glycol, monomethyl ether, and sodium hydroxide) and STB (super tropical bleach). Although DS-2 is generally not corrosive to metal surfaces, it damages skin, paints, plastics, rubber, and leather materials. STB, while effective, has the same environmental problems as bleaches and cannot be used on the skin. Consequently, personal decontamination equipment typically consists of packets of wipes containing such chemicals as sodium hydroxide, ethanol, and phenol. These chemicals are selected to provide a nucleophilic attack at the phosphorous atom of nerve agents. Efforts aimed at alternatives to oxidizers have focused on the development of processes for the catalytic destruction (CD) of nerve agents and pesticides. Chiron, S. et al. "Pesticide chemical oxidation: state-of-the-art," Water Research 2000, 34(2), 366-377; and Russell, A. J. et al. "Biomaterials for mediation of chemical and biological warfare agents," Annu. Rev. Biomed. Eng. 2003, 5, 1-27. It was first recognized in the 1950s that certain metal ions, especially Cu(II), had the ability to catalyze the hydrolysis of nerve agents and their simulants. The catalytic activity of such chemicals was significantly enhanced when Cu(II) was bound to certain ligands. For example, diisopropyl phosphoro fluoridate (DFP) has a hydrolytic half-life of approximately 2 days in water, 5 hours in water when CuSO is added, and just 8 minutes in water when Cu(II) bound to either histidine or N,N'-dipyridyl is added in an approximately 2:1 ratio of metal complex to substrate. Sarin was found to be even more susceptible to metal-based catalysis with a half-life of only 1 minute in the presence of tetramethyl-ED A-Cu(II) complex (1:1 metal complex to substrate). However, the use of free copper-ligand complexes for catalyzing the degradation of nerve agents also has disadvantages. First, the nerve agent must be brought into contact with a solution of the metal-ion-containing catalyst. Second, the ratio of metal to chelate must be carefully controlled. Third, solubility issues can still limit the pH range and choice of chelates for use in a particular environment. Catalytic hydrolysis is an important step in the detoxification of insecticides and chemical warfare agents; reactions show high specificity and dramatically enhanced rates. In addition, researchers have begun to look at enzymes stabilized by attachment to a polymeric support as catalysts for the degradation of nerve agents. These enzymes, variously known as organophosphorous acid anhydrases, phosphotriesterases, sarinase, or others, are extracted either from microorganisms, such as Pseudomonas diminuta, or from squid. The enzymatic approach shows promise but is limited by the specificity of the proteins for their substrates, e.g., a parathion hydrolase would not be effective against another nerve agent. Further, the enzymes require a very specific range of conditions, e.g., pH, to function properly. In addition, field conditions can involve concentrated solutions of nerve agents, which can overwhelm the relatively low concentration of enzymes, which can be immobilized on a support. The shortcomings of the free metal-ligand complexes and enzymatic approaches has caused the majority of the practical catalytic destruction technologies to focus on acid- catalyzed or base-catalyzed hydrolysis or nucleophile-aided hydrolysis. Magee, R. S. "U.S. chemical stockpile disposal program: the search for alternative technologies. In Effluents From Alternative Demilitarization Technologies," ed. FW Holm, Dordrecht: Kluwer Acad., 1998, 22, 112; Amos, D.; Leake, B. "Clean-up of chemical agents on soils using simple washing or chemical treatment processes," J. Hazard. Mater. 1994, 39, 107-1 17; Yang, Y. C. "Chemical detoxification of nerve agent," Ace. Chem. Res. 1999, 32, 109-15; and Yang, Y. C ; Baker, J.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages154 Page
-
File Size-