Hyperon-Nucleon Interaction from Chiral EFT

Hyperon-Nucleon Interaction from Chiral EFT

Hyperon-nucleon interaction from chiral EFT Johann Haidenbauer IAS & JCHP, Forschungszentrum Jülich, Germany Hypernuclear Workshop, Newport News, May 28, 2014 Johann Haidenbauer Hyperon-nucleon interaction Outline 1 Introduction 2 YN in chiral effective field theory 3 YN Results 4 Three- and four-body systems Johann Haidenbauer Hyperon-nucleon interaction NN in chiral effective field theory 0 1 10 3 60 1 P P S -10 1 0 0 0 -20 40 -10 Phase Shift [deg] -30 Phase Shift [deg] -20 -40 20 0 50 100 150 200 250 0 50 100 150 200 250 Lab. Energy [MeV] Lab. Energy [MeV] 0 Phase Shift [deg] 50 -5 3 3 0 P P -10 1 40 2 -15 30 -20 -20 -25 20 Phase Shift [deg] Phase Shift [deg] -30 10 -35 150 0 3 0 50 100 150 200 250 0 50 100 150 200 250 S1 Lab. Energy [MeV] Lab. Energy [MeV] 5 4 ε 100 1 3 2 1 0 Phase Shift [deg] 50 -1 Phase Shift [deg] -2 0 50 100 150 200 250 Lab. Energy [MeV] 0 0 50 100 150 200 250 Lab. Energy [MeV] NLO, N2LO, N3LO (E. Epelbaum, W. Glöckle, Ulf-G. Meißner, NPA747 (2005) 362) Johann Haidenbauer Hyperon-nucleon interaction YN in chiral effective field theory Advantages: Power counting systematic improvement by going to higher order Possibility to derive two- and three baryon forces and external current operators in a consistent way Obstacle: YN data base is rather poor about 35 data points, all from the 1960s 10 data points from the KEK-PS E251 collaboration (1999-2005) constraints from hypernuclei no polarization data ) no phase shift analysis ! impose SU(3)f constraints We∗ follow the scheme of S. Weinberg (1990) in complete analogy to the study of NN in χEFT by E. Epelbaum et al. ∗J.H., N. Kaiser, S. Petschauer, U.-G. Meißner, A. Nogga, W. Weise Johann Haidenbauer Hyperon-nucleon interaction Power counting X ν Veff ≡ Veff(Q; g; µ) = (Q=Λ) Vν (Q/µ, g) ν Q ... soft scale (baryon three-momentum, Goldstone boson four-momentum, Goldstone boson mass) Λ ... hard scale g ... pertinent low–energy constants µ ... regularization scale Vν ... function of order one ν ≥ 0 ... chiral power Leading order (LO): ν = 0 a) non-derivative four-baryon contact terms b) one-meson (Goldstone boson) exchange diagrams Next-to-leading order (NLO): ν = 2 a) four-baryon contact terms with two derivatives b) two-meson (Goldstone boson) exchange diagrams Johann Haidenbauer Hyperon-nucleon interaction Contact terms for BB e.g.,LO contact terms for BB: ¯ ¯ 1 ~ 1 ¯ ¯ = Ci NΓi N NΓi N = C BaBb (Γi B) (Γi B) ; L )L i b a 2 ~ 2 ¯ ¯ = Ci Ba (Γi B) Bb (Γi B) ; L a b 3 ~ 3 ¯ ¯ = Ci Ba (Γi B) Bb (Γi B ) L a b 0 pΣ + pΛ Σ+ p 2 6 0 B = Σ− −pΣ + pΛ n 0 2 6 1 Ξ− Ξ0 p2Λ B − − 6 C @ A a, b ... Dirac indices of the particles µ µν µ Γ1 = 1 ; Γ2 = γ ; Γ3 = σ ; Γ4 = γ γ5 ; Γ5 = γ5 ~ Ci , Ci ... low-energy constants Johann Haidenbauer Hyperon-nucleon interaction Contact terms for BB spin-momentum structure of the contact term potential: BB contact terms without derivatives(LO): (0) V = C ; ! + CT ;BB!BB ~σ1 ~σ2 BB!BB S BB BB · BB contact terms with two derivatives(NLO): (2) 2 2 2 2 V = C1~q + C2~k + (C3~q + C4~k )(~σ1 ~σ2) BB!BB · i + C5(~σ1 + ~σ2) (~q ~k) + C6(~q ~σ1)(~q ~σ2) 2 · × · · i + C7(~k ~σ1)(~k ~σ2) + C8(~σ1 ~σ2) (~q ~k) · · 2 − · × note: Ci ! Ci;BB!BB ~q = ~p0 − ~p; ~k = (~p0 + ~p)=2 Johann Haidenbauer Hyperon-nucleon interaction SU(3) symmetry 10 independent spin-isospin channels in NN and YN (for L=0) (NN (I=0), NN (I=1), ΛN, ΣN (I=1/2), ΣN (I=3/2), ΛN ΣN) $ in principle (atLO), 10 low-energy constants ) SU(3) symmetry only5 independent low-energy constants ) SU(3) structure for scattering of two octet baryons: direct product: ∗ 8 8 = 1 8a 8s 10 10 27 ⊗ ⊕ ⊕ ⊕ ⊕ ⊕ CS;i , CT ;i , C1;i , etc., can be expressed by the constants corresponding to the SU(3)f irreducible representations: ∗ C1, C8a , C8s , C10 , C10, C27 Johann Haidenbauer Hyperon-nucleon interaction SU(3) structure of contact terms for BB Channel I V1S0; V3P0;3P1;3P2 V3S1; V3S1−3D1; V1P1 V1P1−3P1 ∗ S = 0 NN ! NN 0 – C10 – NN ! NN 1 C27 – – “ ∗ ” S = −1 ΛN ! ΛN 1 1 `9C27 + C8s ´ 1 C8a + C10 p−1 C8s8a 2 10 2 20 “ ∗ ” ΛN ! ΣN 1 3 `−C27 + C8s ´ 1 −C8a + C10 p3 C8s8a 2 10 2 20 p−1 C8s8a 20 “ ∗ ” ΣN ! ΣN 1 1 `C27 + 9C8s ´ 1 C8a + C10 p3 C8s8a 2 10 2 20 3 27 10 ΣN ! ΣN 2 C C – Number of contact terms: NN: 2 (LO) 7 (NLO) YN : +3 (LO) +11 (NLO) YY : +1 (LO) + 4 (NLO) C1 contributes only to I = 0, S = 2 channels!! ) − Johann Haidenbauer Hyperon-nucleon interaction Pseudoscalar-meson exchange SU(3)f -invariant pseudoscalar-meson-baryon interaction Lagrangian: fi fl gA(1 − α) ¯ µ gAα ¯ µ L = − p Bγ γ5 f@µP; Bg + p Bγ γ5 [@µP; B] 2Fπ 2Fπ f = gA=(2Fπ); gA ' 1:26, Fπ ≈ 93 MeV α = F=(F + D) with gA = F + D 0 0 η 1 pπ + p π+ K + 2 6 B 0 C P = B π− −pπ + pη K 0 C 2 6 @ 0 A K − K¯ − p2η 6 f = f f = p1 (4α − 1)f f = − p1 (1 + 2α)f NNπ NNη8 3 ΛNK 3 f = −(1 − 2α)f f = − p1 (1 + 2α)f f = p1 (4α − 1)f ΞΞπ ΞΞη8 3 ΞΛK 3 f = p2 (1 − α)f f = p2 (1 − α)f f = (1 − 2α)f ΛΣπ 3 ΣΣη8 3 ΣNK f = 2αf f = − p2 (1 − α)f f = −f ΣΣπ ΛΛη8 3 ΞΣK Johann Haidenbauer Hyperon-nucleon interaction Pseudoscalar-meson (boson) exchange One-pseudoscalar-meson exchange (V OBE )[LO] OBE ~σ1 ~q ~σ2 ~q 0 0 = 0 0 VB B !B B fB1B P fB2B P · · 1 2 1 2 − 1 2 ~ 2 + 2 q mP f 0 ... coupling constants B1B1P mP ... mass of the exchanged pseudoscalar meson dynamical breaking of SU(3) symmetry due to the mass splitting of the ps mesons (mπ = 138.0 MeV, mK = 495.7 MeV, mη = 547.3 MeV) taken into account already atLO! Details: (H. Polinder, J.H., U.-G. Meißner, NPA 779 (2006) 244; PLB 653 (2007) 29) Johann Haidenbauer Hyperon-nucleon interaction Two-pseudoscalar-meson exchange diagrams Two-pseudoscalar-meson exchange diagrams (V TBE )[NLO] Σ N Σ N Σ N Σ N π π π π u u u u u u u u π π u u π uπ u Σ N Σ N Σ N Σ N Σ N Σ N Σ N η π K u u Λ u u Ξ u uΣ ··· uη u u π u uK u Σ N Σ N Σ N ) J.H., S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, NPA 915 (2013) 24 Johann Haidenbauer Hyperon-nucleon interaction Coupled channels Lippmann-Schwinger Equation ν0ν;J 0 ν0ν;J 0 Tρ0ρ (p ; p) = Vρ0ρ (p ; p) Z 1 00 002 X dp p ν0ν00;J 0 00 2µν00 ν00ν;J 00 + V 0 00 (p ; p ) T 00 (p ; p) (2π)3 ρ ρ p2 − p002 + iη ρ ρ ρ00,ν00 0 ρ0;ρ = ΛN, ΣN LS equation is solved for particle channels (in momentum space) Coulomb interaction is included via the Vincent-Phatak method The potential in theLS equation is cut off with the regulator function: ν0ν;J 0 Λ 0 ν0ν;J 0 Λ Λ −(p=Λ)4 Vρ0ρ (p ; p) f (p )Vρ0ρ (p ; p)f (p); f (p) = e ! consider values Λ = 450 - 700 MeV [500 - 650 MeV] Johann Haidenbauer Hyperon-nucleon interaction NLO Results Pseudoscalar-meson exchange All one- and two-pseudoscalar-meson exchange diagrams are included SU(3) symmetry is broken by using the physical masses of the pion, kaon, and eta SU(3) breaking in the coupling constants is ignored Fπ = FK = Fη = F0 = 93 MeV; gA = 1.26 o assume that η η8 (i.e. θP = 0 and fBBη 0) ≡ 1 ≡ assume that α = F=(F + D) = 2/5 (semi-leptonic decays ) α ≈ 0:364) Correction to V OBE due to baryon mass differences are ignored (A fit with two-pion-meson exchange diagrams is possible!) (A fit with physical values for Fπ, FK , Fη is possible!) Johann Haidenbauer Hyperon-nucleon interaction Contact terms SU(3) symmetry is assumed (at NLO SU(3) breaking corrections to theLO contact terms arise!) 10 contact terms in S-waves no SU(3) constraints from the NN sector are imposed! 3 3 12 contact terms in P-waves and in S1– D1 SU(3) constraints from the NN sector are imposed! 1 3 1 contact term in P1– P1 (singlet-triplet mixing) is set to zero contact terms in S-waves: can be fairly well fixed from data some correlations between NLO andLO LECs Johann Haidenbauer Hyperon-nucleon interaction Contact terms inP-waves contact terms in P-waves are much less constrained use SU(3) and fix some (5) LECs from NN the others (7) are fixed from “bulk” properties: (1) σΛp 10 mb at plab 700 900 MeV/c ≈ ≈ − (2) dσ=dΩ − at plab 135 160 MeV/c Σ p!Λn ≈ − Other (future) options: consider matter properties: use spin-orbit splitting of the Λ single particle levels in nuclei Consider the Scheerbaum factor SΛ calculated in nuclear matter to relate the strength of the Λ-nucleus spin-orbit potential to the two body ΛN interaction (R.R.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    34 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us