The Riemann Curvature Tensor and the Einstein Equation

The Riemann Curvature Tensor and the Einstein Equation

Riemannian Curvature February 26, 2013 We now generalize our computation of curvature to arbitrary spaces. 1 Parallel transport around a small closed loop We compute the change in a vector, wα, which we parallel transport around a closed loop. The loop starts at a point P, which we take to have coordinates (0; 0), progresses along a direction uα a distance λ to a α point at (λ, 0). Next, we transport along the direction v a distance σ to a point at (λ, σ), giving a curve C1 from (0; 0) to (λ, σ). Rather than returning in the direction −uα by λ then −vα by σ, we perform a second α α transport, interchanging the order: first v by σ, then u by λ, giving curve C2 from (0; 0) to (λ, σ). We then compare the expressions for wα (λ, σ) along the two curves. This gives the same result as if we had transported around the closed loop C1 − C2, but the computation is easier this way. Start with two directions, uα (0; 0) and vα (0; 0). Parallel transport each in the direction of the other to get uα (0; σ) and vα (λ, 0): dvα vα (λ, 0) = vα (0; 0) + (0; 0) λ dλ α β µ α = v (0; 0) − u (0; 0) v (0; 0) Γ µβ (0; 0) λ and duα uα (0; σ) = uα (0; 0) + (0; 0) σ dλ α β µ α = u (0; 0) − v (0; 0) u (0; 0) Γ µβ (0; 0) σ Now take a third vector, wα (0; 0) and transport it to wα (λ, σ) in two different ways, first along uα and then vα, then in the opposite order. First, α α β µ α w (λ, 0) = w (0; 0) − u (0; 0) w (0; 0) Γ µβ (0; 0) λ then α α β µ α w (λ, σ) = w (λ, 0) − v (λ, 0) w (λ, 0) Γ µβ (λ, 0) σ α β µ α = w (0; 0) − u (0; 0) w (0; 0) Γ µβ (0; 0) λ β λ τ β µ ρ σ µ α δ α − v (0; 0) − u (0; 0) v (0; 0) Γ τλ (0; 0) λ w (0; 0) − u (0; 0) w (0; 0) Γ σρ (0; 0) λ Γ µβ (0; 0) + u @δΓ µβ (0; 0) λ σ = wα (0; 0) β µ α −u (0; 0) w (0; 0) Γ µβ (0; 0) λ β µ α −v (0; 0) w (0; 0) Γ µβ (0; 0) σ λ τ µ β α +u (0; 0) v (0; 0) w (0; 0) Γ τλ (0; 0) Γ µβ (0; 0) σλ β ρ σ µ α +v (0; 0) u (0; 0) w (0; 0) Γ σρ (0; 0) Γ µβ (0; 0) σλ 1 β µ δ α −v (0; 0) w (0; 0) u @δΓ µβ (0; 0) λσ λ τ µ β δ α 2 +u (0; 0) v (0; 0) w (0; 0) Γ τλ (0; 0) u @δΓ µβ (0; 0) λ σ β ρ σ µ δ α 2 +v (0; 0) u (0; 0) w (0; 0) Γ σρ (0; 0) u @δΓ µβ (0; 0) λ σ λ τ β ρ σ µ α 2 −u (0; 0) v (0; 0) Γ τλ (0; 0) u (0; 0) w (0; 0) Γ σρ (0; 0) Γ µβ (0; 0) λ σ λ τ β ρ σ µ δ α 3 − u (0; 0) v (0; 0) Γ τλ (0; 0) u (0; 0) w (0; 0) Γ σρ (0; 0) u @δΓ µβ (0; 0) λ σ Now that all quantities are expressed at P = (0; 0), we may drop these (0; 0) arguments. Keeping only terms to second order: wα (λ, σ) = wα − uβwµΓα λ − vβwµΓα σ C1 µβ µβ β µ δ α λ τ µ β α −v w u @δΓ µβλσ + u v w Γ τλΓ µβσλ β ρ σ µ α +v u w Γ σρΓ µβσλ Now repeat in the opposite order (just interchange uα with vα and σ with λ), wα (λ, σ) = wα − vβwµΓα σ − uβwµΓα λ C2 µβ µβ β µ δ α λ τ µ β α −u w v @δΓ µβλσ + v u w Γ τλΓ µβσλ β ρ σ µ α +u v w Γ σρΓ µβσλ The difference between these gives the change in wα under parallel transport around the loop δwα = wα C1−C2 = wα (λ, σ) − wα (λ, σ) C1 C2 α β µ α β µ α λ τ µ β α = w − u w Γ µβλ − v w Γ µβσ + u v w Γ τλΓ µβσλ β ρ σ µ α β µ δ α +v u w Γ σρΓ µβσλ − v w u @δΓ µβλσ α β µ α β µ α λ τ µ β α −w + v w Γ µβσ + u w Γ µβλ − v u w Γ τλΓ µβσλ β ρ σ µ α β µ δ α −u v w Γ σρΓ µβσλ + u w v @δΓ µβλσ so α α α β µ α β µ α β µ α β µ α δw = w − w − u w Γ µβλ + u w Γ µβλ − v w Γ µβσ + v w Γ µβσ µ β δ α β δ α +w u v @δΓ µβ − v u @δΓ µβ σλ µ λ τ β α β ρ σ α λ τ β α β ρ σ α +w u v Γ τλΓ µβ + v u Γ µρΓ σβ − v u Γ τλΓ µβ − u v Γ µρΓ σβ λσ µ β ν α ν β α = w u v Γ µβ,ν − v u Γ µν,β σλ µ λ τ β β α ν β σ α β ν σ α +w u v Γ τλ − Γ λτ Γ µβ + v u Γ µβΓ σν − u v Γ µν Γ σβ λσ µ α α σ α σ α ν β +w Γ µβ,ν − Γ µν,β + Γ µβΓ σν − Γ µν Γ σβ v u λσ The change in wα per unit area is our measure of the curvature, δwα = wµ Γα − Γα + Γσ Γα − Γσ Γα vν uβ λσ µβ,ν µν,β µβ σν µν σβ µ α β ν = w R µβν u v We see that the change in wα depends linearly on wα, and also on the orientation of the infinitesimal loop spanned by uα and vα. The rest of the expression, α α α σ α σ α R µβν ≡ Γ µβ,ν − Γ µν,β + Γ µβΓ σν − Γ µν Γ σβ 2 is called the Riemann curvature tensor. It may be thought of as a trilinear operator which takes an oriented unit area element, 1 Sβν = uβvν − uν vβ 2 α α βν α to give a linear operator, T µ = R µβν S . This linear operator gives the infinitesimal change in w per unit area, in the limit of zero area, when wα is transported around the area element with orientation Sβν . α Since all elements of this construction are defined geometrically from within the manifold, R µβν is intrinsic to the manifold. To see that it is also a tensor, we could recompute the same construction in α different coordinates. Since the entire construction is perturbative, we would find the components of R µβν changing linearly and homogeneously in the transformation matrix. However, there is an easier way to prove α α that R µβν is a tensor. Consider two covariant derivatives of the vector w , α α β α DµDν w = Dµ @ν w + w Γ βν α β α ρ β ρ α α β α ρ = @µ @ν w + w Γ βν + @ν w + w Γ βν Γ ρµ − @ρw + w Γ ρν Γ νµ Because we use covariant derivatives, this object is necessarily a tensor. Now take the derivatives in the opposite order and subtract, giving the commutator. This is also a tensor, α α α [Dµ;Dν ] w = DµDν w − Dν Dµw α β α β α ρ β ρ α α β α ρ = @µ@ν w + @µw Γ βν + w Γ βν,µ + @ν w + w Γ βν Γ ρµ − @ρw + w Γ ρν Γ νµ α β α β α ρ β ρ α α β α ρ −@ν @µw − @ν w Γ βµ − w Γ βµ,ν − @µw + w Γ βµ Γ ρν + @ρw + w Γ ρν Γ µν α α β α ρ α β α ρ α = @µ@ν w − @ν @µw + @µw Γ βν + @ν w Γ ρµ − @ν w Γ βµ − @µw Γ ρν α β α ρ α β α ρ − @ρw + w Γ ρν Γ νµ + @ρw + w Γ ρν Γ µν β α β ρ α β α β ρ α +w Γ βν,µ + w Γ βν Γ ρµ − w Γ βµ,ν − w Γ βµΓ ρν β α = w R βνµ β α β α Since the result is w properly contracted with R βνµ, and w is a tensor, R βνµ must also be a tensor. 2 Symmetries of the curvature tensor α α α Recall that parallel transport of w preserves the length, w wα of w . This means that the transformation, α α µ α µ α βν δµ + T µσλ w = w + w R µβν S σλ = wα + δwα α α α must be an infinitesimal Lorentz transformation, Λ β = δβ + " β.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    7 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us