A Brief History of Deep Learning

A Brief History of Deep Learning

A brief history of deep learning Alice Gao Lecture 10 Readings: this article by Andrew Kurenkov Based on work by K. Leyton-Brown, K. Larson, and P. van Beek 1/11 Outline Learning Goals A brief history of deep learning Lessons learned summarized by Geoff Hinton Revisiting the Learning goals 2/11 Learning Goals By the end of the lecture, you should be able to I Describe the causes and the resolutions of the two AI winters in the past. I Describe the four lessons learned summarized by Geoff Hinton. 3/11 A brief history of deep learning A brief history of deep learning based on this article by Andrew Kurenkov. 4/11 The birth of machine learning (Frank Rosenblatt 1957) I A perceptron can be used to represent and learn logic operators (AND, OR, and NOT). I It was widely believed that AI is solved if computers can perform formal logical reasoning. 5/11 First AI winter (Marvin Minsky 1969) I A rigorous analysis of the limitations of perceptrons. I (1) We need to use multi-layer perceptrons to represent simple non-linear functions such as XOR. I (2) No one knows a good way to train multi-layer perceptrons. I Led to the first AI winter from the 70s to the 80s. 6/11 The back-propagation algorithm (Rumelhart, Hinton and Williams 1986) I In their Nature article, they precisely and concisely explained how we can use the back-propagation algorithm to train multi-layer perceptrons. 7/11 Second AI Winter I Multi-layer neural networks trained with back-propagation don’t work well, especially compared to simpler models (e.g. support vector machines and/or random forests). I Led to the second AI winter in the mid 90s. 8/11 The rise of deep learning I In 2006, Hinton , Osindero and Teh showed that back-propagation works if the initial weights are chosen in a smart way. I In 2012, Hinton entered the ImageNet competition using deep convolutional neural networks and did far better than the next closest entry (an error rate 15.3% rather than 26.2% for the second best entry). I The deep learning tsunami continues today. 9/11 Lessons learned summarized by Geoff Hinton I Our labeled data sets were thousands of times too small. I Our computers were millions of times too slow. I We initialized the weights in a stupid way. I We used the wrong type of non-linearity. 10/11 Revisiting the Learning Goals By the end of the lecture, you should be able to I Describe the causes and the resolutions of the two AI winters in the past. I Describe the four lessons learned summarized by Geoff Hinton. 11/11.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    11 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us