Matroidal subdivisions, Dressians and tropical Grassmannians vorgelegt von Diplom-Mathematiker Benjamin Frederik Schröter geboren in Frankfurt am Main Von der Fakultät II – Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften – Dr. rer. nat. – genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Wilhelm Stannat Gutachter: Prof. Dr. Michael Joswig Prof. Dr. Hannah Markwig Senior Lecturer Ph.D. Alex Fink Tag der wissenschaftlichen Aussprache: 17. November 2017 Berlin 2018 Zusammenfassung In dieser Arbeit untersuchen wir verschiedene Aspekte von tropischen linearen Räumen und deren Modulräumen, den tropischen Grassmannschen und Dressschen. Tropische lineare Räume sind dual zu Matroidunterteilungen. Motiviert durch das Konzept der Splits, dem einfachsten Fall einer polytopalen Unterteilung, wird eine neue Klasse von Matroiden eingeführt, die mit Techniken der polyedrischen Geometrie untersucht werden kann. Diese Klasse ist sehr groß, da sie alle Paving-Matroide und weitere Matroide enthält. Die strukturellen Eigenschaften von Split-Matroiden können genutzt werden, um neue Ergebnisse in der tropischen Geometrie zu erzielen. Vor allem verwenden wir diese, um Strahlen der tropischen Grassmannschen zu konstruieren und die Dimension der Dressschen zu bestimmen. Dazu wird die Beziehung zwischen der Realisierbarkeit von Matroiden und der von tropischen linearen Räumen weiter entwickelt. Die Strahlen einer Dressschen entsprechen den Facetten des Sekundärpolytops eines Hypersimplexes. Eine besondere Klasse von Facetten bildet die Verallgemeinerung von Splits, die wir Multi-Splits nennen und die Herrmann ursprünglich als k-Splits bezeichnet hat. Wir geben eine explizite kombinatorische Beschreibung aller Multi-Splits eines Hypersimplexes. Diese korrespondieren mit Nested-Matroiden. Über die tropische Stiefelabbildung erhalten wir eine Beschreibung aller Multi-Splits für Produkte von Simplexen. Außerdem präsentieren wir Berechnungen für explizite untere Schranken der Anzahl der Facetten einiger Sekundärpolytope von Hypersimplexen. Berechnungen und Algorithmen spielen auch im Weiteren eine wichtige Rolle. Wir führen eine neue Methode zum Berechnen von tropischen linearen Räumen und sogar allgemeiner von dualen Komplexen von polyedrischen Unterteilungen ein. Diese Methode basiert auf einem Algorithmus von Ganter (1984) für endliche Hüllensysteme. Außerdem beschreiben wir die Implementierung eines algebraischen Teilkörpers der formalen Puiseux-Reihen. Dieser kann eingesetzt werden zum Lösen von linearen Programmen und konvexen Hüllenproblemen, die jeweils von einem reelen Parameter abhängen. Darüber hinaus ist dieses Werkzeug sowohl für tropische Konvexgeometrie als auch tropische algebraische Geometrie wertvoll. Tropische Varietäten, wie zum Beispiel tropische lineare Räume oder tropische Grass- mannsche, sind der gemeinsame Schnitt von endlich vielen tropischen Hyperflächen. Die Menge der zu den Hyperflächen gehörenden Polynome bildet eine tropische Basis. Für den allgemeinen Fall geben wir eine explizite obere Schranke für den Grad an, den die Polynome in einer tropischen Basis benötigen. Als Anwendung berechnen wir f-Vektoren von tropischen Varietäten und veranschaulichen die Unterschiede zwischen Gröbnerbasen und tropischen Basen. iii Abstract In this thesis we study various aspects of tropical linear spaces and their moduli spaces, the tropical Grassmannians and Dressians. Tropical linear spaces are dual to matroid subdivisions. Motivated by the concept of splits, the simplest case of a subdivision, a new class of matroids is introduced, which can be studied via techniques from polyhedral geometry. This class is very large as it strictly contains all paving matroids. The structural properties of these split matroids can be exploited to obtain new results in tropical geometry, especially on the rays of the tropical Grassmannians and the dimension of the Dressian. In particular, a relation between matroid realizability and certain tropical linear spaces is elaborated. The rays of a Dressian correspond to facets of the secondary polytope of a hypersimplex. A special class of facets is obtained by a generalization of splits, called multi-splits or originally, in Herrmann’s work, k-splits. We give an explicit combinatorial description of all multi-splits of the hypersimplex. These are in correspondence to nested matroids and, via the tropical Stiefel map, also to multi-splits of products of simplices. Hence, we derive a description for all multi-splits of a product of simplices. Moreover, a computational result leads to explicit lower bounds on the total number of facets of secondary polytopes of hypersimplices. Other computational aspects are also part of our research: A new method for computing tropical linear spaces and more general duals of polyhedral subdivisions is developed and implemented in the software polymake. This is based on Ganter’s algorithm (1984) for finite closure systems. Additionally, we describe the implementation of a subfield of the field of formal Puiseux series. This is employed for solving linear programs and computing convex hulls depending on a real parameter. Moreover, this approach is useful for computations in convex and algebraic tropical geometry. Tropical varieties, as for example tropical linear spaces or tropical Grassmannians, are intersections of finitely many tropical hypersurfaces. The set of corresponding polynomials is a tropical basis. We give an explicit upper bound for the degree of a general tropical basis of a homogeneous polynomial ideal. As an application f-vectors of tropical varieties are discussed. Various examples illustrate differences between Gröbner bases and tropical bases. v Acknowledgments First of all, I would like to express my gratitude to my advisor Michael Joswig for his continuous support during the work on my thesis and the possibilities he gave me. I thank him, Hannah Markwig, Alex Fink and Wilhelm Stannat for refereeing my thesis. Further thanks go to my other co-authors Simon Hampe, Georg Loho and Benjamin Lorenz. I am indebted to Alex Fink, Takayuki Hibi, Hiroshi Hirai and Raman Sanyal for their hospitality. Furthermore, I would like to thank all of them and many others for fruitful and enriching conversations and discussions that I had during the time of writing this thesis. Especially, I would like to mention here Kazuo Murota, Thorsten Theobald and Timo de Wolff. Special thanks go to the members and former members of my group “Discrete Mathematics / Geometry” at TU Berlin, Benjamin Assarf, Simon Hampe, Robert Loewe, Georg Loho, Benjamin Lorenz, Marta Panizzut, Antje Schulz, Kristin Shaw and André Wagner for all their support and discussions. I also thank them and additionally Jan Hofmann and Olivier Sète for proof-reading parts of the manuscript. Moreover, I would like to thank my family, my mother, father and sister as well as my friends and colleagues for the encouragement throughout the last years. vii Contents Zusammenfassung iii Abstract v Acknowledgments vii 1 Introduction to tropical linear spaces 1 1.1 Matroids and subdivisions . ......................... 1 1.2 The Dressian .................................. 3 1.3 The tropical Grassmannian . ........................ 4 1.4Aboutthisthesis................................ 6 2 Matroids from hypersimplex splits 9 2.1 Introduction ................................... 9 2.2 Matroid polytopes and their facets . ................... 11 2.3 Matroid subdivisions and tropical linear spaces ............... 22 2.4 Rays of the Dressian .............................. 28 2.5 Remarks and open questions ......................... 34 2.6 Some matroid statistics ............................ 38 3 Multi-splits of hypersimplices 41 3.1 Introduction ................................... 41 3.2 Multi-splits of the hypersimplex ........................ 43 3.3 Matroid subdivisions and multi-splits ..................... 52 3.4 Coarsest matroid subdivisions ......................... 61 4 Algorithms for tropical linear spaces 67 4.1 Introduction ................................... 67 viii Contents 4.2 Closure systems, lower sets and matroids . .................. 68 4.3 Extended tight spans .............................. 71 4.4Tropicallinearspaces.............................. 73 4.4.1 Performance comparison ........................ 75 4.5 A case study on f-vectors of tropical linear spaces ............. 76 4.5.1 The Dressian Dr(3, 8)......................... 77 4.6Outlook..................................... 80 4.6.1 Higher Dressians ............................ 80 4.6.2 Further optimization .......................... 81 5 The degree of a tropical basis 83 5.1 Introduction ................................... 83 5.2 Degree bounds ................................. 84 5.3 Examples .................................... 86 5.4 Non-constant coefficients ............................ 88 5.5 The f-vector of a tropical variety ....................... 89 5.6 Open questions ................................. 92 6 Polyhedral computations over Puiseux fractions 93 6.1 Introduction ................................... 93 6.2 Ordered fields and rational functions ..................... 94 6.3 Parameterized polyhedra . ........................... 96 6.4Tropicaldualconvexhulls...........................102 6.5 Implementation .................................104 6.6 Computations ..................................105 6.6.1 Using polymake ............................105 6.6.2
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages131 Page
-
File Size-