HPC and AI Middleware for Exascale Systems and Clouds

HPC and AI Middleware for Exascale Systems and Clouds

HPC and AI Middleware for Exascale Systems and Clouds Talk at HPC-AI Advisory Council UK Conference (October ‘20) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: [email protected] Follow us on http://www.cse.ohio-state.edu/~panda https://twitter.com/mvapich High-End Computing (HEC): PetaFlop to ExaFlop 100 PetaFlops in 415 Peta 2017 Flops in 2020 (Fugaku in Japan with 7.3M cores 1 ExaFlops Expected to have an ExaFlop system in 2021! Network Based Computing Laboratory HPC-AI-UK (Oct ‘20) 2 Increasing Usage of HPC, Big Data and Deep/Machine Learning Big Data (Hadoop, Spark, HPC HBase, (MPI, PGAS, etc.) Memcached, etc.) Convergence of HPC, Big Deep/Machine Data, and Deep/Machine Learning Learning! (TensorFlow, PyTorch, BigDL, cuML, etc.) Increasing Need to Run these applications on the Cloud!! Network Based Computing Laboratory HPC-AI-UK (Oct ‘20) 3 Converged Middleware for HPC, Big Data and Deep/Machine Learning? Physical Compute Network Based Computing Laboratory HPC-AI-UK (Oct ‘20) 4 Converged Middleware for HPC, Big Data and Deep/Machine Learning? Network Based Computing Laboratory HPC-AI-UK (Oct ‘20) 5 Converged Middleware for HPC, Big Data and Deep/Machine Learning? Network Based Computing Laboratory HPC-AI-UK (Oct ‘20) 6 Converged Middleware for HPC, Big Data and Deep/Machine Learning? Hadoop Job Deep/Machine Learning Job Spark Job Network Based Computing Laboratory HPC-AI-UK (Oct ‘20) 7 Presentation Overview • MVAPICH Project – MPI and PGAS (MVAPICH) Library with CUDA-Awareness • HiBD Project – High-Performance Big Data Analytics Library • HiDL Project – High-Performance Deep Learning – High-Performance Machine Learning • Optimizations and Deployments in Public Cloud – AWS and Azure • Conclusions Network Based Computing Laboratory HPC-AI-UK (Oct ‘20) 8 Designing (MPI+X) for Exascale • Scalability for million to billion processors – Support for highly-efficient inter-node and intra-node communication (both two-sided and one-sided) • Scalable Collective communication – Offloaded – Non-blocking – Topology-aware • Balancing intra-node and inter-node communication for next generation multi-/many-core (128-1024 cores/node) – Multiple end-points per node • Support for efficient multi-threading • Integrated Support for GPGPUs and Accelerators • Fault-tolerance/resiliency • QoS support for communication and I/O • Support for Hybrid MPI+PGAS programming • MPI + OpenMP, MPI + UPC, MPI + OpenSHMEM, CAF, MPI + UPC++… • Virtualization • Energy-Awareness Network Based Computing Laboratory HPC-AI-UK (Oct ‘20) 9 Overview of the MVAPICH2 Project • High Performance open-source MPI Library • Support for multiple interconnects – InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), and AWS EFA • Support for multiple platforms – x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD (upcoming)) • Started in 2001, first open-source version demonstrated at SC ‘02 • Used by more than 3,100 organizations in 89 countries • Supports the latest MPI-3.1 standard • More than 900,000 (> 0.9 million) downloads from the • http://mvapich.cse.ohio-state.edu OSU site directly • Additional optimized versions for different systems/environments: • Empowering many TOP500 clusters (June ‘20 ranking) – MVAPICH2-X (Advanced MPI + PGAS), since 2011 – 4th , 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China – MVAPICH2-GDR with support for NVIDIA GPGPUs, since 2014 – 8th, 448, 448 cores (Frontera) at TACC – MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014 – 12th, 391,680 cores (ABCI) in Japan – MVAPICH2-Virt with virtualization support, since 2015 – 18th, 570,020 cores (Nurion) in South Korea and many others – MVAPICH2-EA with support for Energy-Awareness, since 2015 – MVAPICH2-Azure for Azure HPC IB instances, since 2019 • Available with software stacks of many vendors and – MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019 Linux Distros (RedHat, SuSE, OpenHPC, and Spack) • Tools: • Partner in the 8th ranked TACC Frontera system – OSU MPI Micro-Benchmarks (OMB), since 2003 • Empowering Top500 systems for more than 15 years – OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015 Network Based Computing Laboratory HPC-AI-UK (Oct ‘20) 10 Architecture of MVAPICH2 Software Family for HPC and DL/ML High Performance Parallel Programming Models Message Passing Interface PGAS Hybrid --- MPI + X (MPI) (UPC, OpenSHMEM, CAF, UPC++) (MPI + PGAS + OpenMP/Cilk) High Performance and Scalable Communication Runtime Diverse APIs and Mechanisms Point-to- Remote Collectives Energy- I/O and Fault Active Introspection point Job Startup Memory Virtualization Algorithms Awareness Tolerance Messages & Analysis Primitives Access File Systems Support for Modern Networking Technology Support for Modern Multi-/Many-core Architectures (InfiniBand, iWARP, RoCE, Omni-Path, Elastic Fabric Adapter) (Intel-Xeon, OpenPOWER, Xeon-Phi, ARM, NVIDIA GPGPU) Transport Protocols Modern Features Transport Mechanisms Modern Features SR- Multi Shared RC SRD UD DC UMR ODP CMA IVSHMEM XPMEM Optane* NVLink CAPI* IOV Rail Memory * Upcoming Network Based Computing Laboratory HPC-AI-UK (Oct ‘20) 11 MVAPICH2 Software Family Requirements Library MPI with IB, iWARP, Omni-Path, and RoCE MVAPICH2 Advanced MPI Features/Support, OSU INAM, PGAS and MPI+PGAS MVAPICH2-X with IB, Omni-Path, and RoCE MPI with IB, RoCE & GPU and Support for Deep/Machine Learning MVAPICH2-GDR HPC Cloud with MPI & IB MVAPICH2-Virt Energy-aware MPI with IB, iWARP and RoCE MVAPICH2-EA MPI Energy Monitoring Tool OEMT InfiniBand Network Analysis and Monitoring OSU INAM Microbenchmarks for Measuring MPI and PGAS Performance OMB Network Based Computing Laboratory HPC-AI-UK (Oct ‘20) 12 Converged Middleware for HPC, Big Data and Deep/Machine Learning Big Data HPC (Hadoop, Spark, (MPI, PGAS, HBase, etc.) Memcached, etc.) Deep/Machine Learning (TensorFlow, PyTorch, BigDL, cuML, etc.) Network Based Computing Laboratory HPC-AI-UK (Oct ‘20) 13 Startup Performance on TACC Frontera MVAPICH2 2.3.4 Intel MPI 2020 MVAPICH2 2.3.4 Intel MPI 2020 25 2000 20 1500 15 1000 10 14X 46X Time (s) 5 Time (s) 500 0 0 56 112 224 448 896 1792 3584 7168 14336 28672 57344 114688229376 Number of Processes Number of Processes • MPI_Init takes 31 seconds on 229,376 processes on 4,096 nodes • All numbers reported with 56 processes per node New designs available in MVAPICH2-2.3.4 Network Based Computing Laboratory HPC-AI-UK (Oct ‘20) 14 Hardware Multicast-aware MPI_Bcast on TACC Frontera 20 1000 Default Multicast Default Multicast 15 750 10 500 Latency (us) 250 5 Latency (us) 1.9X 2X (Nodes=2K, PPN=28) 0 0 2 8 32 128 512 2K 8K 32K 128K 512K Message Size Message Size 15 80 Default Multicast Default Multicast Size=16B, PPN=28 Size=32kB, PPN=28 10 60 1.8X 40 2X 5 Latency (us) Latency (us) 20 0 0 2 4 8 16 32 64 128 256 512 1k 2 4 8 16 32 64 128 256 512 1K Number of Nodes Number of Nodes • MCAST-based designs improve latency of MPI_Bcast by up to 2X at 2,048 nodes • Use MV2_USE_MCAST=1 to enable MCAST-based designs Network Based Computing Laboratory HPC-AI-UK (Oct ‘20) 15 Performance of Collectives with SHARP on TACC Frontera 120 1000 100 MVAPICH2-X 80 100 MVAPICH2-X-SHARP 6X 60 40 10 MVAPICH2-X 5X Latency (us) Latency (us) MPI_Reduce MPI_Allreduuce 20 MVAPICH2-X-SHARP (PPN=1, 7861) Nodes = 0 (PPN=1, 7861) Nodes = 1 Message size Message size 250 Optimized SHARP designs in MVAPICH2-X 200 MVAPICH2-X Up to 9X performance improvement with SHARP over MVAPICH2-X default for 1ppn 150 MVAPICH2-X-SHARP MPI_Barrier, 6X for 1ppn MPI_Reduce and 5X for 1ppn MPI_Allreduce MPI_Barrier 100 9X Latency (us) 50 B. Ramesh , K. Suresh , N. Sarkauskas , M. Bayatpour , J. Hashmi , H. Subramoni , and D. K. Panda, Scalable MPI Collectives using 0 SHARP: Large Scale Performance Evaluation on the TACC Frontera 4 8 16 32 64 128 256 512 System, ExaMPI2020 - Workshop on Exascale MPI 2020, Nov 2020, 1024 2048 4096 7861 Number of nodes Accepted to be presented. Optimized Runtime Parameters: MV2_ENABLE_SHARP = 1 Network Based Computing Laboratory HPC-AI-UK (Oct ‘20) 16 Performance of MPI_Ialltoall using HW Tag Matching 4000 2000 1.6 X 1.7 X 3000 1500 8 Nodes 16 Nodes 2000 1000 1000 500 Latency (us) Latency (us) 0 0 16K 32K 64K 128K 256K 512K 1M 16K 32K 64K 128K 256K 512K 1M Message Size (byte) Message Size (byte) MVAPICH2 MVAPICH2+HW-TM MVAPICH2 MVAPICH2+HW-TM 8000 1.8 X 15000 1.5 X 6000 32 Nodes 64 Nodes 10000 4000 5000 2000 Latency (us) Latency (us) 0 0 16K 32K 64K 128K 256K 512K 1M 16K 32K 64K 128K 256K 512K 1M Message Size (byte) Message Size (byte) • Up to 1.8x Performance Improvement, Sustained benefits as system size increases M. Bayatpour , M. Ghazimirsaeed , S. Xu , H. Subramoni , and D. K. Panda, Design and Characterization of InfiniBand Hardware Tag Matching in MPI, CCGrid ‘20. Will be available in upcoming MVAPICH2-X Network Based Computing Laboratory HPC-AI-UK (Oct ‘20) 17 Neighborhood Collectives – Performance Benefits • SpMM • NAS DT up to 34x speedup up to 15% improvement M. Ghazimirsaeed, Q. Zhou, A. Ruhela, M. Bayatpour, H. Subramoni, and D. K. Panda, A Hierarchical and Load-Aware Design for Large Message Neighborhood Collectives, SC ’20, Will be available in upcoming MVAPICH2-X Accepted to be presented Network Based Computing Laboratory HPC-AI-UK (Oct ‘20) 18 GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU • Standard MPI interfaces used for unified data movement • Takes advantage of Unified Virtual Addressing (>= CUDA 4.0) • Overlaps data movement from GPU with RDMA transfers At Sender: MPI_Send(s_devbuf, size, …); inside MVAPICH2

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    58 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us