Quantum Physics in Consciousness Studies Dirk K. F. Meijer and Simon Raggett Review/Literature compilation: The Quantum Mind Extended* Contents: Introduction in Quantum aspects of brain function, p 1-19 Quantum approaches to neurobiology: state of art, p 19-31 David Bohm: Wholeness and the implicate order, p 30-39 Henry Stapp: Attention, intention and quantum coherence, p 39-44 Roger Penrose: Consciousness and the geometry of universe, p 45-54 Stuart Hameroff: Objective reduction in brain tubules, p 55-68 Hiroomi Umezawa and Herbert Frohlich: Quantum brain dynamics, p 69-72 Mari Jibu & Kunio Yasue: Quantum field concepts, p 72-76 Johnjoe McFadden: Electromagnetic fields, p77-80 Gustav Bernroider: Ion channel coherence, p 80-85 Chris King: Cosmology, consciousness and chaos theory, p 85-92 Piero Scaruffi: Consciousness as a feature of matter, p 92-94 Danko Georgiev: the Quantum neuron, p 94-98 Andrei Khrennikov: Quantum like brain and other metaphoric QM models, p 98-102 Hu and Wu/ Persinger: Spin mediated consciousness, p 103- 106 Chris Clarke: Qualia and free will, p 106- 109 Herms Romijn: Photon mediated consciousness and recent models, p, 110-114 Stuart Kauffman: Consciousness & the poised state p, 114-116 Post-Bohmian concepts of an of a universal quantum field, p 117-121 Dirk Meijer: Cyclic operating mental workspace, p 121-131 Amit Goswami: The vacuum as a universal information field, p 132-146 Simon Raggett: A final attempt to a theory on consciousness p, 146-157 Note on cited sources, p 158 References, p 158-175 Internetsites, p 175 1 Introduction in quantum aspects of brain function Since the development of QM and relativistic theories in the first part of the 20th century, attempts have been made to understand and describe the mind or mental states on the basis of QM concepts (see Meijer, 2014, Meijer and Korf, 2013,). Quantum physics, currently seen as a further refinement in the description of nature, does not only describe elementary microphysics but applies to classical or macro-physical (Newtonian) phenomena as well. Hence the human brain and its mental aspects are associated to classical brain physiology and are also part of a quantum physical universe. Most neurobiologists considered QM mind theories irrelevant to understand brain/mind processes (e.g. Edelman and Tononi, 2000; Koch and Hepp, 2006). However, there is no single theory on QM brain/mind theory. In fact a spectrum of more or less independent models have been proposed, that all have their intrinsic potentials and problems. The elements of quantum physics discussed here are summarized in Table 1 and 2; details of the various QM theories have been described elsewhere (Meijer, 2012; Meijer and Korf, 2013). Some QM mind options assume some sort of space-time multidimensionality, i.e there are more than the four conventional space-time dimensions. Other options assume that one or more extra dimensions are associated with a mental attribute or that the individual mind is (partly) an expression of a universal mind through holonomic communication with quantum fields (Fig.1). The latter idea has led to holographic (holonomic) theories (Pribram 1986, 2011). The human brain is then conceived as an interfacing organ that not only produces mind and consciousness but also receives information. The brain or parts of the brain are conceived as an interference hologram of incoming data and already existing data (a “personal universe”). If properly exposed (“analyzed”), information about the outer world can be distilled. In neurobiological terms, the existing data is equivalent to the subject’s memory, whereas the “analyzer” is cerebral electrophysiology. Bohm hypothesized that additional dimensions are necessary to describe QM interference processes, thereby circumventing probabilistic theories and consciousness-induced collapse of the wave function. In this theory, the universe is a giant superposition of waves, representing an unbroken wholeness, of which the human brain is a part (Bohm, 1990). Accordingly, the individual mind or consciousness is an inherent property of all matter (and energy), and as such being part, or rather an expression, of this universal quantum field. The apparently diffuse time/space localization of mental functions argues in favor of an underlying multidimensional space/time reality. Bohm and Hiley (1987) also proposed a two-arrow (bidirectional) time dimension. In this concept the stochastic (or double stochastic) character of quanta is explained by an underlying quantum field: the implicate order. This concept implies entanglement (non-locality) as well. 2 Another hypothesis, having the potential to couple wave information to mental processes, proposes that wave information is transmitted from and into the brain by wave resonance. Through conscious observation they collapse locally to material entities (Stapp 2009; Pessa and Vitiello, 2003; Schwartz et al., 2004). Stapp (2012) argued that this does not represent an interference effect between superposed states (as assumed by Hameroff and Penrose, 1996), but that through environmental de-coherence, super-positions become informative to the brain/organism. A complementary implication of these theories is that mental processes are not necessarily embedded in entropic physical time. In line with this QM idea is that memories are not stored as a temporal sequence, but rather a-temporally. Fig. 1: The hypothesis that the universe and our minds are integral parts of a universal consciousness Some QM mind theories suppose the possible involvement of specific molecules. A spectrum of ions and molecules has been suggested to operate in a quantum manner (Tuszinsky and Woolf 2010). For instance QM theories have been based on micro-tubular proteins (Penrose 1989; Hameroff 2007), proteins involved in synaptic transmission (Beck and Eccles 1992; Beck 2001), including Ca ion-channels (Stapp 2009) and channel proteins instrumental in the initiation and propagation of action potentials (potassium-ion channels, Bernroider and Roy 2004. There is also the hypothesis that synaptic transmission represents a typical (quantum) probability state that becomes critical for an all or none neuronal response (Beck and Eccles 1992; Beck 2001). Attributing non-linear and non-computable characteristics of consciousness, 3 Hameroff and Penrose, 2011, 2013, argue against mechanisms of all or none firing of axonal potentials (Beck and Eccles, 2003). They rather prefer the model of Davia (2010), proposing that consciousness is related to waves traveling in the brain as a uniting life principle on multiple scales. According to some QM mind theories (Woolf and Hameroff, 2001), tunneling was proposed to facilitate membrane/vesicle fusion in neural information processing at the synapse. Kauffman relates quantum processes in the biological matrix of the brain to the emergence of mental processing (Kauffman 2010; Vattay et al. 2012). This theory, mainly based on chromophores detecting photons, assumes that the coherence of some quantum configurations adhered to proteins is stabilized or is maintained by re-coherence. This principle may have guided evolutionary selection of proteins. Accordingly, mind and consciousness are both quantum mechanical and an expression by the classical neural mechanisms. The underlying coherent quantum states provide the potentiality for the collapse to the de-coherent material state, resulting in classical events such as firing neurons, that are at least to some extent, a- causal, i.e. beyond classical determinacy. The quantum system (of the brain) interacts with a quantum environment, the phase information is lost and cannot be reassembled. By entanglement, the quantum coherence in a small region, e.g. the cell or the brain, might have spatial long-range effects (Vattay et al. 2012; Hagan et al. 2002). Kauffman accepts long-lived coherence states in biological molecules at body temperature (now 750 femto-seconds in chlorophyll at 77K) to be potentially enabling parallel problem solving as major challenges for further investigations. The question is also which neurons or neuronal structures are in particular associated to the coherence/de-coherence brain model of consciousness. The question is often put as to why quantum theory should be involved in discussions of consciousness at all, and also as to why it should be treated as something special. In thinking about quantum theory, it is important not to be bullied into viewing it as something weird and peripheral that can be ignored (Atmanspacher, 2011). Unfortunately, this allows the more superficial thinkers to dismiss all theories of quantum consciousness. This sort of practice has recently been criticized as ‘pseudoscepticism’, a parallel form to pseudoscience. Pseudo- skepticism (see Wikipedia) similarly uses denunciation in the name of science or scientific affiliation without citing any evidence or possible experimentation to establish this criticism, (see Utts and Josephson, 1996). The features of quantum theory that make it special and also possibly relevant to consciousness can be summarized as follows: 1.) Quantum theory describes the fundamental level of energy and matter. In contrast to higher levels, the quantum level has aspects, such as mass, charge and spin that are given properties of the universe, not capable of further reduction or explanation. In quantum theories of consciousness, it is suggested that consciousness is such a fundamental property existing at this level. Some theories are additionally linked to the structure
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages177 Page
-
File Size-