Introduction to Sobolev Spaces

Introduction to Sobolev Spaces

Cambridge University Press 978-1-108-41570-5 — Finite Elements Sasikumaar Ganesan , Lutz Tobiska Excerpt More Information chapter 1 ........................................................................................................ INTRODUCTION TO SOBOLEV SPACES ........................................................................................................ In thischapterwe recall some basics on functional analysisandprovideabrief introduction to Sobolev spaces. For amore detailed and comprehensive study, we refer to Adams (1975). 1.1. Banach and hilbert spaces ................................................................................................................ Definition 1.1. Let X beareallinear space. Amapping : X R iscalled anormonX if · → x 0 x 0 for all x X, • = ⇔ = ∈ λx λ x for all x X, λ R, • =| | ∈ ∈ x y x y for all x,y X. • + ≤ + ∈ The pair (X, ) iscalled anormed space. · Setting y x inthe inequality and using theother two properties weget x 0 for all =− ≥ x X. ∈ Definition 1.2. Asequence (xn)n N iscalled Cauchy sequence, iffor all ε>0thereexists an ∈ index n0(ε)such that for all m,n > n0(ε) it holds xm xn <ε. − Definition 1.3. Asequence (xn)n N converges to x X iffor all ε>0there isanindex n0(ε) ∈ ∈ such that for all n > n0(ε) it holds xn x <ε. − Definition 1.4. Anormed space (X, ) iscalled complete if every Cauchy sequence in X · converges in X. Definition 1.5. Acomplete normed space iscalledBanach space. © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-41570-5 — Finite Elements Sasikumaar Ganesan , Lutz Tobiska Excerpt More Information 2 introduction to sobolev spaces Example 1.1. Let Rd, d isthe dimension, beanopen andboundeddomain. We denote by ⊂ Lp(), 1 p < ,thesetof all measurable functions f : R forwhich ≤ ∞ → f (x) p dx < . | | ∞ Similarly,thesetof all measurable functions f : R satisfying → esssup f (x) : x < {| | ∈ } ∞ will be denotedbyL (). Then, Lp(), p [1, ] isareallinear space.Setting for 1 p < ∞ ∈ ∞ ≤ ∞ 1/p p f p : f (x) dx and f : esssup f (x) : x , L () = | | L∞( ) = {| | ∈ } respectively, Lp() becomesanormed space for any p [1, ] ifwe identify functions which ∈ ∞ areequal up toasetof measurezero. This identification is necessary because weonly have for a set M of measurezero ⊂ f (x) p dx 0 f (x) 0 for all x M. | | = ⇒ = ∈ \ Strictly speaking, theelements in Lp(), p [1, ]areclasses of equivalent functions (equal up ∈ ∞ to a set of measurezero). Then, thefirst condition in Definition 1.1 becomes true. Thesecond condition follows directly from the definition of p and thethird condition is just the ·L () inequality stated in Lemma 1.1. Lemma 1.1 (Minkowski’s inequality). For f ,g Lp(),p [1, ],wehave ∈ ∈ ∞ f g p f p g p . + L () ≤ L () + L () Theorem 1.1. Lp(),p [1, ], is a Banach space. ∈ ∞ Lemma 1.2 (Hölders’s inequality). For f Lp() and g Lq() with p,q [1, ], 1/p ∈ ∈ ∈ ∞ + 1/q 1,wehavefg L1() and = ∈ fg 1 f p g q . L () ≤ L () L ( ) Definition 1.6. Twonorms 1 and 2 onanormed space X arecalled equivalent if there · · exist positive constants C1, C2 such that C1 x 1 x 2 C2 x 1 for all x X. ≤ ≤ ∈ Note that topologicalproperties do not change when switching to an equivalent norm, for example,asequence isconvergent in(X, 1) iff it isconvergent in(X, 2). · · Definition 1.7. Let (X, X ) beanormed space. Amapping g : X R iscalledlinear if · → g(αx βy) αg(x) βg(y) for all α,β R, x,y X. + = + ∈ ∈ A linear mapping g : X R iscontinuous if there is a constant C such that → g(x) C x X for all x X. | |≤ ∈ © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-41570-5 — Finite Elements Sasikumaar Ganesan , Lutz Tobiska Excerpt More Information 1.1. banach and hilbert spaces 3 Definition 1.8. We define the sum of twocontinuous linearfunctionals, g1 and g2,and the multiplication of acontinuous linearfunctional g with a real number α by (g1 g2)(x): g1(x) g2(x)and (αg)(x): αg(x), α R, x X. + = + = ∈ ∈ Then, it can beshownthat thesetof all continuous linearfunctionalscreate a reallinear space, the dual space X . In the following, for theelements g X we use the notation g,x : g(x). ∗ ∈ ∗ = Lemma 1.3. The set X of continuous linear functionals x g,x on X is a Banach space with ∗ → respect to the norm g,x g X∗ : sup | |. = 0 x X x X = ∈ Proof. Using the definition of the dual norm X , wesee · ∗ g X 0 g,x 0 for all x X g 0. ∗ = ⇔ = ∈ ⇔ = Further, we have λg,x λ g,x g,x λg X∗ sup | | sup | | λ sup | | λ g X∗ = 0 x X x X = 0 x X x X =| | 0 x X x X =| | = ∈ = ∈ = ∈ andfor the sum of two functionals it holds g1 g2,x g1,x g2,x g1 g2 X∗ sup | + | sup | + | + = 0 x X x X = 0 x X x X = ∈ = ∈ g1,x g2,x sup | | sup | | g1 X∗ g2 X∗ ≤ 0 x X x X + 0 x X x X = + = ∈ = ∈ It remains to show that (X∗, X ) iscomplete. Let (gn)n N beaCauchy sequence in X∗,that · ∗ ∈ is, for all ε>0there isanindex n0(ε)such that for all m,n > n0(ε) it holds gm gn X <ε. − ∗ Then, for afixed x X,thesequence ofreal numbers(gn,x )n N isaCauchy sequence in R ∈ ∈ due to gm,x gn,x gm gn,x gm gn X x X <ε x X | − | = | − | ≤ − ∗ for all m,n > n0(ε). Any Cauchy sequence ofreal numbers isconvergent in R,that means limn gn,x g(x) for all x X. The linearity of g follows from →∞ = ∈ g(αx βy) lim gn,αx βy lim α gn,x β gn,y n n + = →∞ + = →∞ + α lim gn,x β lim gn,y αg(x) βg(y). n n = →∞ + →∞ = + Concerning thecontinuity of g we recall that Cauchy sequences are bounded,thus gn,x gn X x X C x X for all x X. | | ≤ ∗ ≤ ∈ The limit n showsthat the linear mapping g : X R iscontinuous. →∞ → © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-41570-5 — Finite Elements Sasikumaar Ganesan , Lutz Tobiska Excerpt More Information 4 introduction to sobolev spaces Definition 1.9. Let V bealinear space. Amapping ( , ):V V R iscalled an innerproduct · · × → on V if (u,v) (v,u) for all u,v V, • = ∈ (αu βv,w) α(u,w) β(v,w) for all u,v,w V, α,β R, • + = + ∈ ∈ (u,u) > 0 for u 0. • = AnormonV is inducedbysetting u : √(u,u). If (V, V ) iscomplete wecall V aHilbert = · space. Lemma 1.4 (Schwarz inequality). LetVbeaHilbertspace.Then, (u,v) u V v V for all u,v V. | |≤ ∈ Example 1.2. V L2()equippedwith the innerproduct = (f ,g): f (x)g(x)dx = isaHilbertspace. Theorem 1.2 (Riesz representation theorem). Let V be a Hilbert space. There is a unique linear mapping R : V V from the dual space V into the Hilbert space V such that for all g V and ∗ → ∗ ∈ ∗ v V ∈ (Rg,v) g,v and Rg V g V . = = ∗ Fixedpoint theorems areoften used to establish theunique solvability of an abstract oper- ator equation. Let us consider the following problem inaBanach space V with an operator P : V V: → Find u V such that u Pu. (1.1) ∈ = Solutions u V ofProblem (1.1) arecalled fixedpoints of themapping P : V V. ∈ → Definition 1.10. Themapping P : V V iscalled contractive or to beacontraction if there is → a positive constant ρ<1such that Pv1 Pv2 V ρ v1 v2 V for all v1,v2 V. − ≤ − ∈ Theorem 1.3 (Banach’sfixedpoint theorem). Let V be a Banach space and P : V Vbea → contraction. Then, we have the following statements: (1) There is a unique fixed point u V solving Problem (1.1). ∗ ∈ (2) The sequence un Pun 1,n 1, converges to the fixed point u∗ V for any initial guess = − ≥ ∈ u0 V. ∈ (3) It holds the error estimate ρn un u∗ V Pu0 u0 V for all n N. − ≤ 1 ρ − ∈ − © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-41570-5 — Finite Elements Sasikumaar Ganesan , Lutz Tobiska Excerpt More Information 1.2. weak derivatives 5 Proof. We start by estimating the distance of ui V to ui 1 V ∈ − ∈ 2 ui ui 1 V Pui 1 Pui 2 V ρ ui 1 ui 2 V ρ ui 2 ui 3 V − − = − − − ≤ − − − ≤ − − − . ≤ i 1 ui ui 1 V ρ − Pu0 u0 V for all i N. − − ≤ − ∈ From that wegetfor m > n 1 ≥ m m um un V (ui ui 1) ui ui 1 V − = − − ≤ − − i n 1 V i n 1 =+ =+ m m n i 1 n 1 ρ − ρ − Pu0 u0 V ρ − Pu0 u0 V ≤ − ≤ 1 ρ − i n 1 =+ − ρn Pu0 u0 V 0 for n . ≤ 1 ρ − → →∞ − Therefore, for any ε>0, thereexists an index bound n0(ε)such that for all m > n n0(ε) ≥ ρn um un V Pu0 u0 V <ε, − ≤ 1 ρ − − consequently,(un) is a Cauchy sequence and convergestosomeu V. We show that u isa ∗ ∈ ∗ fixedpoint of P. Indeed, u∗ Pu∗ V u∗ un V Pun 1 Pu∗ V − ≤ − + − − u∗ un V ρ un 1 u∗ V 0 for n . ≤ − + − − → →∞ Next we prove that there is at most one fixedpoint. Assume that therearetwofixedpoints u u . Then, weconclude 1∗ = 2∗ u∗ u∗ V Pu∗ Pu∗ V ρ u∗ u∗ V (1 ρ) u∗ u∗ V 0. 1 − 2 = 1 − 2 ≤ 1 − 2 ⇒ − 1 − 2 ≤ Since ρ<1 wegetu u . Finally, we recall the estimate for m > n 1 1∗ = 2∗ ≥ ρn un u∗ V un um V um u∗ V Pu0 u0 V um u∗ V − ≤ − + − ≤ 1 ρ − + − − from which the last statement follows by m .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us