C H a P T E R 1 0 Conics, Parametric Equations, and Polar Coordinates

C H a P T E R 1 0 Conics, Parametric Equations, and Polar Coordinates

CHAPTER 10 Conics, Parametric Equations, and Polar Coordinates Section 10.1 Conics and Calculus . 360 Section 10.2 Plane Curves and Parametric Equations . 383 Section 10.3 Parametric Equations and Calculus . 392 Section 10.4 Polar Coordinates and Polar Graphs . 407 Section 10.5 Area and Arc Length in Polar Coordinates . 423 Section 10.6 Polar Equations of Conics and Kepler’s Laws . 436 Review Exercises . 444 Problem Solving . 461 CHAPTER 10 Conics, Parametric Equations, and Polar Coordinates Section 10.1 Conics and Calculus 1. y2 ϭ 4x 2. x2 ϭ 8y 3. ͑x ϩ 3͒2 ϭϪ2͑y Ϫ 2͒ Vertex: ͑0, 0͒ Vertex: ͑0, 0͒ Vertex: ͑Ϫ3, 2͒ ϭ ϭ ϭϪ1 p 1 > 0 p 2 > 0 p 2 < 0 Opens to the right Opens upward Opens downward Matches graph (h). Matches graph (a). Matches graph (e). ͑x Ϫ 2͒2 ͑y ϩ 1͒2 x2 y2 x2 y2 4. ϩ ϭ 1 5. ϩ ϭ 1 6. ϩ ϭ 1 16 4 9 4 9 9 Center: ͑2, Ϫ1͒ Center: ͑0, 0͒ Circle radius 3. Ellipse Ellipse Matches (g) Matches (b) Matches (f) y2 x2 ͑x Ϫ 2͒2 y2 7. Ϫ ϭ 1 8. Ϫ ϭ 1 16 1 9 4 Hyperbola Hyperbola Center: ͑0, 0͒ Center: ͑Ϫ2, 0͒ Vertical transverse axis Horizontal transverse axis Matches (c) Matches (d) 2 ϭϪ ϭ ͑Ϫ3͒ 2 ϩ ϭ 9. y 6x 4 2 x 10. x 8y 0 Vertex: ͑0, 0͒ y x2 ϭ 4͑Ϫ2͒y y 3 8 Focus: ͑Ϫ , 0͒ (0, 0) 2 Vertex: ͑0, 0͒ x 3 −8 −4 4 8 ϭ 4 Directrix: x 2 ͑ Ϫ ͒ Focus: 0, 2 − (0, 0) 4 x ϭ 12 8 4 Directrix: y 2 −8 4 −12 8 11. ͑x ϩ 3͒ ϩ ͑ y Ϫ 2͒2 ϭ 0 12. ͑x Ϫ 1͒2 ϩ 8͑y ϩ 2͒ ϭ 0 ͑ Ϫ ͒2 ϭ ͑Ϫ1͒͑ ϩ ͒ ͑ Ϫ ͒2 ϭ ͑Ϫ ͒͑ ϩ ͒ y 2 4 4 x 3 x 1 4 2 y 2 Vertex: ͑Ϫ3, 2͒ y Vertex: ͑1, Ϫ2͒ y Focus: ͑Ϫ3.25, 2͒ 4 Focus: ͑1, Ϫ4͒ x −8 −4 4 8 Directrix: x ϭϪ2.75 (−3, 2) 2 Directrix: y ϭ 0 −4 x (1,− 2) −8 −6 −4 −2 −8 −2 −12 −4 360 Section 10.1 Conics and Calculus 361 13. y2 Ϫ 4y Ϫ 4x ϭ 0 14. y2 ϩ 6y ϩ 8x ϩ 25 ϭ 0 y2 Ϫ 4y ϩ 4 ϭ 4x ϩ 4 y2 ϩ 6y ϩ 9 ϭϪ8x Ϫ 25 ϩ 9 ͑y Ϫ 2͒2 ϭ 4͑1͒͑x ϩ 1͒ ͑y ϩ 3͒2 ϭ 4͑Ϫ2͒͑x ϩ 2͒ Vertex: ͑Ϫ1, 2͒ y Vertex: ͑Ϫ2, Ϫ3͒ y Focus: ͑0, 2͒ 6 Focus: ͑Ϫ4, Ϫ3͒ 8 Directrix: x ϭϪ2 4 Directrix: x ϭ 0 4 (−1, 2) x −20 −16 −12 −8 −4 (2,3)−− x −8 2 2 4 6 −12 2 15. x2 ϩ 4x ϩ 4y Ϫ 4 ϭ 0 16. y2 ϩ 4y ϩ 8x Ϫ 12 ϭ 0 x2 ϩ 4x ϩ 4 ϭϪ4y ϩ 4 ϩ 4 y2 ϩ 4y ϩ 4 ϭϪ8x ϩ 12 ϩ 4 ͑x ϩ 2͒2 ϭ 4͑Ϫ1͒͑y Ϫ 2͒ ͑y ϩ 2͒2 ϭ 4͑Ϫ2͒͑x Ϫ 2͒ Vertex: ͑Ϫ2, 2͒ y Vertex: ͑2, Ϫ2͒ y 4 Focus: ͑Ϫ2, 1͒ 4 Focus: ͑0, Ϫ2͒ (−2, 2) 2 Directrix: y ϭ 3 Directrix: x ϭ 4 x −6 −4 −2 4 6 x (2,− 2) −6 −4 −2 2 −4 −2 −6 − 4 −8 2 ϩ ϩ ϭ ϭϪ1͑ 2 Ϫ ϩ ͒ ϭϪ1͑ 2 Ϫ ϩ Ϫ ͒ 17. y x y 0 18. y 6 x 8x 6 6 x 8x 16 10 2 ϩ ϩ 1 ϭϪ ϩ 1 2 y y 4 x 4 Ϫ6y ϭ ͑x Ϫ 4͒ Ϫ 10 2 ͑ ϩ 1͒ ϭ ͑Ϫ1͒͑ Ϫ 1͒ 2 y 2 4 4 x 4 Ϫ6y ϩ 10 ϭ ͑x Ϫ 4͒ 1 1 5 ͑ Ϫ ͒ 2 ͑ Ϫ ͒2 ϭϪ ͑ Ϫ ͒ Vertex: 4, 2 x 4 6 y 3 ͑ Ϫ1͒ Focus: 0, 2 ͑ Ϫ ͒2 ϭ ͑Ϫ3͒͑ Ϫ 5͒ − x 4 4 2 y 3 ϭ 1 5 2 Directrix: x 2 5 ͑ ͒ 4 Vertex: 4, 3 ϭϪ1 ± Ί1 Ϫ y1 2 4 x Focus: ͑4, 1͒ −3 6 1 1 19 ϭϪ Ϫ Ί Ϫ ϭ −2 10 y2 2 4 x Directrix: y 6 −4 19. y2 Ϫ 4x Ϫ 4 ϭ 0 20. x2 Ϫ 2x ϩ 8y ϩ 9 ϭ 0 2 2 y ϭ 4x ϩ 4 x Ϫ 2x ϩ 1 ϭϪ8y Ϫ 9 ϩ 1 2 ϭ 4͑1͒͑x ϩ 1͒ ͑x Ϫ 1͒ ϭ 4͑Ϫ2͒͑y ϩ 1͒ Vertex: ͑Ϫ1, 0͒ 4 Vertex: ͑1, Ϫ1͒ 2 Focus: ͑0, 0͒ Focus: ͑1, Ϫ3͒ −8 10 Directrix: x ϭϪ2 −6 6 Directrix: y ϭ 1 ϭ Ί ϩ y1 2 x 1 −4 −10 ϭϪ Ί ϩ y2 2 x 1 362 Chapter 10 Conics, Parametric Equations, and Polar Coordinates 21. ͑ y Ϫ 2͒2 ϭ 4͑Ϫ2͒͑x Ϫ 3͒ 22. ͑ x ϩ 1͒2 ϭ 4͑Ϫ2͒͑y Ϫ 2͒ y2 Ϫ 4y ϩ 8x Ϫ 20 ϭ 0 x2 ϩ 2x ϩ 8y Ϫ 15 ϭ 0 23. ͑x Ϫ h͒2 ϭ 4p͑y Ϫ k͒ 24. Vertex: ͑0, 2͒ x2 ϭ 4͑6͒͑y Ϫ 4͒ ͑ y Ϫ 2͒2 ϭ 4͑2͒͑x Ϫ 0͒ x2 Ϫ 24y ϩ 96 ϭ 0 y2 Ϫ 8x Ϫ 4y ϩ 4 ϭ 0 25. y ϭ 4 Ϫ x2 26. y ϭ 4 Ϫ ͑x Ϫ 2͒2 ϭ 4x Ϫ x2 x2 ϩ y Ϫ 4 ϭ 0 x2 Ϫ 4x ϩ y ϭ 0 27. Since the axis of the parabola is vertical, the form of the 28. From Example 2:4p ϭ 8 or p ϭ 2 equation is y ϭ ax2 ϩ bx ϩ c. Now, substituting the val- Vertex: ͑4, 0͒ ues of the given coordinates into this equation, we obtain ͑ x Ϫ 4͒2 ϭ 8͑y Ϫ 0͒ 3 ϭ c, 4 ϭ 9a ϩ 3b ϩ c, 11 ϭ 16a ϩ 4b ϩ c. 2 Ϫ Ϫ ϩ ϭ ϭ 5 ϭϪ14 ϭ x 8x 8y 16 0 Solving this system, we have a 3, b 3 , c 3. Therefore, ϭ 5 2 Ϫ 14 ϩ 2 Ϫ Ϫ ϩ ϭ y 3x 3 x 3 or 5x 14x 3y 9 0. 29. x2 ϩ 4y2 ϭ 4 y 30. 5x2 ϩ 7y2 ϭ 70 y 6 x2 y2 2 x2 y2 ϩ ϭ 1 ϩ ϭ 1 4 4 1 14 10 2 (0, 0) 2 ϭ 2 ϭ 2 ϭ x 2 ϭ 2 ϭ 2 ϭ x a 4, b 1, c 3 −11 a 14, b 10, c 4 −6 −2 2 4 6 Center: ͑0, 0͒ Center: ͑0, 0͒ −4 − Foci: ͑±Ί3, 0͒ 2 Foci: ͑±2, 0͒ −6 Vertices: ͑±2, 0͒ Vertices: ͑±Ί14, 0͒ Ί3 2 Ί14 e ϭ e ϭ ϭ 2 Ί14 7 ͑x Ϫ 1͒2 ͑y Ϫ 5͒2 y ͑x ϩ 2͒2 ͑y ϩ 4͒2 y 31. ϩ ϭ 1 32. ϩ ϭ 1 9 25 12 1 1͞4 x (1, 5) −5 −4 −3 −2 −1 − 2 ϭ 2 ϭ 2 ϭ 1 a 25, b 9, c 16 2 2 1 2 3 a ϭ 1, b ϭ , c ϭ −2 ͑ ͒ 4 4 4 (2,4)−− Center: 1, 5 −3 ͑Ϫ Ϫ ͒ ͑ ͒ ͑ ͒ x Center: 2, 4 −4 Foci: 1, 9 , 1, 1 8 4 4 8 Ί ͑ ͒ ͑ ͒ 3 −5 Vertices: 1, 10 , 1, 0 Foci: Ϫ2 ± , Ϫ4 ΂ 2 ΃ 4 e ϭ Vertices: ͑Ϫ1, Ϫ4͒, ͑Ϫ3, Ϫ4͒ 5 Ί3 e ϭ 2 Section 10.1 Conics and Calculus 363 33. 9x2 ϩ 4y2 ϩ 36x Ϫ 24y ϩ 36 ϭ 0 9͑x2 ϩ 4x ϩ 4͒ ϩ 4͑y2 Ϫ 6y ϩ 9͒ ϭϪ36 ϩ 36 ϩ 36 ϭ 36 ͑x ϩ 2͒2 ͑y Ϫ 3͒2 ϩ ϭ 1 4 9 a2 ϭ 9, b2 ϭ 4, c2 ϭ 5 y Center: ͑Ϫ2, 3͒ Foci: ͑Ϫ2, 3 ± Ί5 ͒ 6 ͑Ϫ ͒ ͑Ϫ ͒ Vertices: 2, 6 , 2, 0 (−2, 3) Ί5 2 e ϭ 3 x 6 4 2 2 34. 16x2 ϩ 25y2 Ϫ 64x ϩ 150y ϩ 279 ϭ 0 35. 12x2 ϩ 20y2 Ϫ 12x ϩ 40y Ϫ 37 ϭ 0 16͑x2 Ϫ 4x ϩ 4͒ ϩ 25͑y2 ϩ 6y ϩ 0͒ ϭϪ279 ϩ 64 ϩ 225 1 12΂x2 Ϫ x ϩ ΃ ϩ 20͑y2 ϩ 2y ϩ 1͒ ϭ 37 ϩ 3 ϩ 20 4 ϭ 10 ϭ 60 ͑x Ϫ 2͒2 ͑y ϩ 3͒2 ϩ ϭ 1 ͑5͞8͒ ͑2͞5͒ ͓x Ϫ ͑1͞2͔͒2 ͑y ϩ 1͒2 ϩ ϭ 1 5 3 5 2 9 a2, , b2 ϭ , c2 ϭ a2 Ϫ b2 ϭ 8 5 40 a2 ϭ 5, b2 ϭ 3, c2 ϭ 2 Center: ͑2, Ϫ3͒ 1 Center: ΂ , Ϫ1΃ 3Ί10 2 Foci: 2 ± , Ϫ3 ΂ 20 ΃ 1 Foci: ΂ ± Ί2, Ϫ1΃ Ί10 2 Vertices: 2 ± , Ϫ3 ΂ 4 ΃ 1 Vertices: ΂ ± Ί5, Ϫ1΃ 2 c 3 e ϭ ϭ a 5 Solve for y: y 20͑y2 ϩ 2y ϩ 1͒ ϭϪ12x2 ϩ 12x ϩ 37 ϩ 20 1 57 ϩ 12x Ϫ 12x2 ͑ ϩ ͒2 ϭ x y 1 −1 1 234 20 −1 57 ϩ 12x Ϫ 12x2 −2 (2, −3) y ϭϪ1 ± Ί 20 −3 −4 (Graph each of these separately.) 1 −33 −3 364 Chapter 10 Conics, Parametric Equations, and Polar Coordinates 36. 36x2 ϩ 9y2 ϩ 48x Ϫ 36y ϩ 43 ϭ 0 37. x2 ϩ 2y2 Ϫ 3x ϩ 4y ϩ 0.25 ϭ 0 4 4 9 1 9 36΂x2 ϩ x ϩ ΃ ϩ 9͑y2 Ϫ 4y ϩ 4͒ ϭϪ43 ϩ 16 ϩ 36 ΂x2 Ϫ 3x ϩ ΃ ϩ 2͑y2 ϩ 2y ϩ 1͒ ϭϪ ϩ ϩ 2 ϭ 4 3 9 4 4 4 ϭ 9 ͓x Ϫ ͑3͞2͔͒2 ͑y ϩ 1͒2 ϩ ϭ 1 4 2 ͓x ϩ ͑2͞3͔͒2 ͑y Ϫ 2͒2 ϩ ϭ 1 1͞4 1 a2 ϭ 4, b2 ϭ 2, c2 ϭ 2 1 3 3 a2 ϭ 1, b2 ϭ , c2 ϭ Center: ΂ , Ϫ1΃ 4 4 2 2 3 Ί Ϫ Center: ΂Ϫ , 2΃ Foci: ΂ ± 2, 1΃ 3 2 2 Ί3 Ϫ1 Ϫ 7 Ϫ Foci: Ϫ , 2 ± Vertices: ΂ , 1΃, ΂ , 1΃ ΂ 3 2 ΃ 2 2 2 2 1 Vertices: ΂Ϫ , 3΃, ΂Ϫ , 1΃ Solve for y: 2͑y2 ϩ 2y ϩ 1͒ ϭϪx2 ϩ 3x Ϫ ϩ 2 3 3 4 Solve for y: 1 7 ͑y ϩ 1͒2 ϭ ΂ ϩ 3x Ϫ x2΃ 2 4 9͑y2 Ϫ 4y ϩ 4͒ ϭϪ36x2 Ϫ 48x Ϫ 43 ϩ 36 7 ϩ 12x Ϫ 4x2 Ϫ͑36x2 ϩ 48x ϩ 7͒ y ϭϪ1 ± Ί ͑y Ϫ 2͒2 ϭ 8 9 (Graph each of these separately.) 1 y ϭ 2 ± ΊϪ͑36x2 ϩ 48x ϩ 7͒ 3 1 (Graph each of these separately.) −2 4 3 −3 −4 2 −1 38.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    109 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us