Electrochemistry: Elektrolytic and Galvanic Cell Co08 Galvanic Series (Beketov, Cca 1860)

Electrochemistry: Elektrolytic and Galvanic Cell Co08 Galvanic Series (Beketov, Cca 1860)

1/26 Electrochemistry: Elektrolytic and galvanic cell co08 Galvanic series (Beketov, cca 1860): Li, Ca, Al, Mn, Cr Zn, Cd Fe, Pb, [H2], Cu, Ag, Au ≈ ≈ ⊕ Cell = system composed of two electrodes and an electrolyte. electrolytic cell: electric energy chemical reaction ! galvanic cell: chemical reaction electric energy ! reversible galvanic cell (zero current) Electrodes anode = electrode where oxidation occurs Cu Cu2+ + 2 e ! − 2 Cl Cl2 + 2 e − ! − cathode = electrode where reduction occurs 2 Cu + + 2 e Cu credit: Wikipedia (free) − ! Cl2 + 2 e 2 Cl − ! − Oxidation and reduction are separated in a cell. The charge flows through the circuit. 2/26 Anode and cathode co08 electrolytic cell galvanic cell '$ '$ - - ⊕&% &% ⊕ Cl2 Cu2+ Cu2+ Pt Cl ! ! 2 Cu Cl Cl − Cu − CuCl2(aq) CuCl2(aq) anode cathode anode cathode “anions go to the anode” 3/26 Galvanic cells: electrodes, convention co08 Electrodes(= half-cells) may be separated by a porous separator, polymeric mem- brane, salt bridge. Cathode is right (reduction) ⊕ Anode is left (oxidation) negative electrode (anode) positive electrode (cathode) ⊕ liquid junction phase boundary . (porous separator) j salt bridge .. semipermeable membrane k Examples: 3 Cu(s) CuCl2(c = 0.1 mol dm ) Cl2(p = 95 kPa) Pt j − j j ⊕ Ag s AgCl s NaCl m 4 mol kg 1 Na(Hg) ( ) ( ) ( = − ) j j j 1 NaCl(m = 0.1 mol kg ) AgCl(s) Ag(s) j − j j ⊕ 2 3 4 3 3 3 Pt Sn +(0.1 mol dm ) + Sn +(0.01 mol dm ) Fe +(0.2 mol dm ) Fe j − − jj − j ⊕ 4/26 Equilibrium cell potential co08 Also: electromotive potential/voltage, electromo- tive force (EMF). Should be measured at zero-current condition (balanced bridge, sensitive voltmeter) Cannot measure a potential of one electrode zero defined by the standard hydrogen electrode): 2 H+ (aq) 2 e H (g) + − 2 ! where H+ = 1 (pH=0) p pst and H2 = 1 ( H2 = ). Construction of a hydrogen electrode: Pt sheet covered by platinum black, saturated by hydrogen credit: wikipedie symbols: E, E, Δϕ; in physics: U 5/26 Cell potential II co08 Electrode potential of electrode X = voltage of cell H2 ( = 1) H+ ( = 1) X j j ⊕ NB: always the reduction potential Standard (reduction) potential of an electrode: all reacting compounds have unit activities Examples: E 0.337 V, E 1.360 V (at 25 C) e 2+ = Cle | Cl = Cu+ |Cu 2 2 − ◦ If the reaction are written in the way the cell produces energy: reaction = (reduction at cathode) + (oxidation at anode) E E red Eox = cathode + anode If all reactions are written as a reduction: reaction = (reduction at cathode) (reduction at anode) − E Ered Ered = cathode anode − 6/26 Termodynamics of a reversible cell co08 Reversibility = reactions can be reversed by a small voltage change. No irreversible processes (metal dissolution, diffusion, liquid junction. ) G W qE zFE p, T Δr m = el = = [ ] − − Nernst equation: ) RT Y E E ln ν = e zF − where Δ G zFE , K exp Δ G /RT exp zFE /RT r me = e = [ r me ] = [ e ] − − E E ,red E ,ox E ,red E ,red e = cathodee + anodee = cathodee anodee − ΔrG < 0 i.e. E > 0 the cell produces current ) E = 0 i.e. ΔrG = 0 = uncharged cell (equilibrium) distiguish from: equilibrium potential (at zero current) E E E E e 2 e 2 (oxidation) but e 1e Cu +|Cu = Cu|Cu + Cl2|2Cl = Cl |Cl − − 2 2 − hydrogen electrode right at 25 C: E = E0 pH 0.05916 V ◦ − · 7/26 Termodynamics of a reversible cell II + co08 only electric work Wel reversible [p, T] ∂ΔrGm ∂E Δ S zF r m = ∂T = ∂T − p p ∂(ΔrGm/T) ∂(E/T) Δ H T2 zFT2 r m = ∂T = ∂T − p p Qm = TΔrSm (II. Law for reversible processes) W Oops! p-V U Q W Q p V W Δr = + = Δ.r + el − H U pV [p] U p V Q W Δr = Δr + Δr( ) = Δr + Δr = + el Eq. Q = ΔrH holds true only if the only work is pressure-volume st And similarly for standard state (p = p , = 1), e.g.: ∂ G ∂E Δr e Δ S m zF e r me = ∂T = ∂T − p p 8/26 Reduction potentials and different valences + co08 Example. E 2+ . E 3+ . e(Cr Cr) = 0 913 V, e(Cr Cr) = 0 744 V. j E −3+ 2+ j − Calculate e(Cr Cr ). j Gibbs energies are additive (not potentials) Cr2+ 2 e Cr Δ G 2F 0.913 V + − r me = ( ) ! − · − Cr3+ 3 e Cr Δ G 3F 0.744 V + − r me = ( ) ! − · − Cr3+ 1 e Cr2+ Δ G 1F E Cr3+ Cr2+ + − r me = e( ) ! − · j F E 3+ 2+ F . F . 1 e(Cr Cr ) = 3 ( 0 744 V) + 2 ( 0 913 V) − · j − · − · − E 3+ 2+ . e(Cr Cr ) = 3 ( 0 744 V) 2 ( 0 913 V) = 0 406 V j · − − · − − 9/26 Electrodes co08 of the first kind (one reaction electrode—ion) – cationic, anionic – metal, amalgam (metal in Hg), nonmetallic, gas of the second kind (nonsoluble salt—two reactions) of the third kind redox (two exidation states) ion selective (membrane) 10/26 Electrodes of the first kind co08 cationic, metal ox: Zn Zn2+, red: Zn2+ Zn not for Fe,j Al + ions, whichj are⊕ covered by oxides amalgam ox: Na(Hg) Na+, red: Na+ Na(Hg) j j ⊕ RT Na(Hg) E E ln Na+|Na = Nae +|Na F − Na+ saturated amalgam: M(Hg)=1 cationic gas: hydrogen anionic gas: chlorine, oxygen −! Cl Cl Pt : Cl 2 e 2 Cl − 2 2 + j j ⊕ − ! − OH O Pt : 1 O 2 e H O 2 OH − 2 2 2 + + 2 j j ⊕ − ! − 1 + : 2 O2 + 2 e + 2H H2O − ! similarly: Br Br Pt − 2 j j ⊕ 11/26 Electrodes of the second kind co08 silver chloride Cl AgCl Ag − j j ⊕ AgCl(s) Ag+ Cl + − Ag+ e ! Ag(s) + − ! AgCl(s) e Ag Cl + − + − ! RT Ag Cl E E − e ln · AgCl | Ag | Cl = AgCl | Ag | Cl − F − − AgCl RT E ln = e Cl AgCl | Ag | Cl F − − − mercury chloride (calomel) Cl Hg Cl Hg − 2 2 j j ⊕ Hg Cl (s) 2 e 2 Hg 2 Cl 2 2 + − + − ! Q Q Q Q Usage: reference electrodes Q Q Pictures by: Analytical chemistry an introduction, 7th edition, Harcourt College, 2000 Q QQ 12/26 Curiosity: Electrodes of the third kind + co08 2 Ca +(aq) Ca(COO)2(s) Zn(COO)2(s) Zn(s) j j j ⊕ Three reactions: Ca2+ (COO) 2 Ca(COO) + 2 − 2 Zn(COO) ! (COO) 2 Zn2+ 2 2 − + 2 ! Zn + + 2 e Zn − ! 2 Ca + + Zn(COO)2 + 2 e Ca(COO)2 + Zn − ! RT 1 E E ln = e F − 2 Ca2+ c 2+ Can measure Ca2+ —there is no Ca Ca (aq) electrode, because Ca reacts with water j (Ion-selective electrodes are more advantageous) 13/26 Redox electrodes co08 metal: Sn4+ Sn2+ Pt j j ⊕ Sn4+ 2 e Sn2+ + − ! quinhydrone electrode (pH 1–8): quinone (p-benzoquinone) + hydroquinone 1:1, sat. in a buffer O O (s) 2 H+ 2 e HO OH (s) + + − quinone (Q)! hydroquinone (QH) Nernst equation: 1 RT . RT E E QH E Q|QH = e ln = e + ln H+ Q|QH 2F 2 Q QH F − Q H+ j . · = (0.699 0.059 pH) V − · Usage: measuring pH 14/26 Ion-selective electrodes co08 Semipermeable membrane (for some ions only) Glass electrode Membrane of special thin glass permeable for H+ (and other ions). Difference of chem. pot. of both solutions μ(H+, ) μ(H+, electrode) − 1 (H+, ) credit: www.ph-meter.info = ln RT (H+, electrode) ref. silver is compensated by the electric work FE. Nernst chloride − ) % equation glass ! credit: wikipedie RT RT E = const ln (H+, ) = const ln 10 pH − F − F · · Usage: measuring pH (2–12), other ions 15/26 Galvanic cells co08 By the source of ΔG: chemical concentration – electrolyte – electrode By ion transfer: one electrolyte with salt bridge with membrane credit: payitoweb.blogspot.com anode: Fe s Fe3+ aq 3 e 0.04 V ( ) ( ) + − ( ) ! 2 − Fe(s) Fe +(aq) + 2 e ( 0.44 V) ! − − cathode: 1 O 2 e 2H+ H O 1.23 V 2 2 + − + 2 ( ) or reduction of organic! compounds (vitamin C) [xcat ev/clanekagcl.ev]16/26 Simple chemical cell co08 Single electrolyte + electrodes Example. Consider a Pt electrode saturated by hydrogen and Ag wire covered by AgCl submerged in a solution of HCl (c 0.01 mol dm 3) on the top of the highest = − Czech mountain, Sneˇzkaˇ (1602 m above sea level). The standard reduction poten- tial of the Ag/AgCl/Cl electrode is 0.222 V (pst 101 325 Pa). Calculate the cell − = voltage. A sea-level-reduced pressure is 999 mbar, temperature 25 C. ◦ .66V(DH) V 0.4616 .61V(i.DH) (lim. V 0.4621 = ) 1 ( V 0.4561 γ = Pa 83128 p 17/26 Chemical cell—separated electrolytes co08 Porous barrier (liquid junction) (.).. Irreversible liquid junction (diffusion) potential. Reduced by the) salt bridge ( ). jj Example: Zn(s) ZnSO4 CuSO4 Cu(s) j jj j ⊕ Electrode concentration cell Examples: Pt—H2(p1) HCl(aq.) H2(p2)—Pt j j ⊕ (Given polarity for p1 > p2) Li(Hg)(1) LiCl(aq) Li(Hg)(2) j j ⊕ (Given polarity for 1 > 2) 18/26 Battery co08 (One or) more connected cells. Common disposable batteries: Alkaline battery (Zn, MnO2 + C) Zn KOH (gel) MnO2 j j ⊕ Zn 2 OH ZnO H O 2 e + − + 2 + − 2 MnO H O 2e ! Mn O 2 OH 2 + 2 + − 2 3 + − ! Lithium (Li metal is light, has high potential) Electrolyte = salt (e.g., LiBF4) in organic polar solvent Several possibilities, e.g.: Li Li+ e + − MnIVO Li+ e ! MnIIILiO 2 + + − 2 ! 19/26 Rechargeable batteries co08 Li-ion, Li-polymer: Li is in C (max.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    26 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us