Soler Model: Stability, Bi-Frequency Solitons, and SU(1,1) Andrew Comech, Texas A&M University and I.I.T.P

Soler Model: Stability, Bi-Frequency Solitons, and SU(1,1) Andrew Comech, Texas A&M University and I.I.T.P

Soler model: stability, bi-frequency solitons, and SU(1,1) Andrew Comech, Texas A&M University and I.I.T.P. (Moscow) Nabile Boussa¨ıd, Universite´ Bourgogne – Franche-Comte,´ Besanc¸on, France July 2016 Einstein: E2 = p2 + m2 Schrodinger:¨ (i∂ )2ψ = ( i )2ψ + m2ψ t − ∇ 2 E = m2 + p2 m + p ≈ 2m p [Schrodinger¨ 26]: i∂ ψ = 1 ( i )2ψ t 2m − ∇ [Dirac28]: E = p2 + m2 = α p + βm, · p i∂ ψ = ( iα + βm) ψ, ψ(x,t) C4, x R3 t − ·∇ ∈ ∈ Dm | {z } 2 2 Dirac matrices α (1≤j≤3) and β: self-adjoint, ( iα + βm) = ∆+ m j − ·∇ − 0 σj I2 0 Standard choice: αj = (Pauli matrices), β = σj 0 0 I2 − 1 Dirac–Maxwell system ψ¯ := ψ∗β γµ(i∂ eA )ψ = mψ, ✷Aµ = eψγ¯ µψ, ∂ Aµ = 0. µ − µ µ [Esteban et al.96, Abenda98]: solitary waves ψ(x,t) = φ(x)e−iωt, ω ( m,m) ∈ − Dirac–Maxwell and Dirac–Coulomb systems 40 30 −iωt Q(φωe ) 20 10 0 E(φ e−iωt) ω -10 -20 -1 -0.5 0 0.5 1 m<ω m − ≤ [Comech15]: solitary waves with ω = m for Dirac–Coulomb; φ(x) e−const√|x|. ∼ γ0 = β, γj = βαj , 1 j 3 ≤ ≤ 2 Self-interacting spinors ψ¯ := ψ∗β Models of self-interacting spinor field: [Ivanenko38, Finkelstein et al.51, Finkelstein et al.56, Heisenberg57] [...] Soler model [Ivanenko38, Soler70], scalar self-interaction: µ k+1 LSoler = ψ¯(iγ ∂ m)ψ + ψψ¯ k > 0 µ − | | in (1+1)D: massive Gross-Neveu model [Gross & Neveu74] Massive Thirring model [Thirring58], vector self-interaction: k+1 µ µ 2 LMTM = ψ¯(iγ ∂ m)ψ + ψγ¯ ψ ψγ¯ ψ k > 0 µ − µ J µ(x) = ψ¯(x)γµψ(x): “charge-current density” 3 Soler model: NLD with scalar self-interaction i∂ ψ = ( iα + mβ) ψ (ψψ¯ )kβψ, ψ(x,t) CN , x Rn t − ·∇ − ∈ ∈ Dm | {z } [Soler70, Cazenave & Vazquez´ 86]: existence of solitary waves in R3, • ψ(x,t) = φ (x)e−iωt, ω (0,m), φ H1(R3) ω ∈ ω ∈ Attempts at stability: [Bogolubsky79, Alvarez & Soler86, Strauss & Vazquez´ 86] ... • Numerics suggest that (all?) solitary waves in 1D cubic Soler model are stable: • [Alvarez & Carreras81, Alvarez & Soler83, Cooper et al.10, Berkolaiko & Comech12], [Mertens et al.12, Shao et al.14, Cuevas-Maraver et al.14] Assuming linear stability, one tries to prove asymptotic stability • [Pelinovsky & Stefanov12][Boussaid & Cuccagna12][Comech, Phan, Stefanov14] 4 Nonrelativistic limit of NLD: ω . m [Ounaies00, Guan08] v(x) Solitary wave: ψ(x,t) = e−iωt; v, u C2 x R3 u(x) ∈ ∈ 0 σ 1 0 iψ˙ = i ·∇ + m (ψψ¯ )k ψ, − σ 0 − 0 1 n ·∇ − o v u v ω iσ + m v 2k u ≈ − ·∇ v −| | u − If ω . m, u v 1: 2mu iσ v, v satisfies NLS: | |≪| | ≪ ≈ − ·∇ 1 (m ω)v = ∆v v 2kv − − −2m −| | Scaling: v(x) = ǫ1/kΦ(ǫx), ǫ = √m ω, − 1 Φ = ∆Φ Φ 2kΦ, Φ(x) R, x Rn. − −2m −| | ∈ ∈ 5 NLD: linearization at a solitary wave Given φ (x)e−iωt, ω ( m,m), consider ψ(x,t) = φ (x)+ r(x,t) e−iωt ω ∈ − ω Linearized eqn on r(x,t), i∂ r = D r ωr + ... t m − (m + ω)i Re r 0 Dm ω + ... Re r ∂t = − Im r Dm + ω + ... 0 Im r − Aω | {z } (m − ω)i ∂tR = AωR; σ(Aω) iR (“spectral stability”) ??? ⊂ ✲ σess(Aω) σ(D ω) m − r0 m ω m ω − − − 6 σ(Aω) Linear instability of NLD 2mi (m + ω)i i∂ ψ = D ψ (ψψ¯ )kβψ, x Rn t m − ∈ −iωt ψ(x,t) = φω(x)e (m − ω)i Theorem 1 ([Comech, Guan, Gustafson12]). t tt ✲ ✲ −λω λω If k > 2/n, so that NLSk is linearly unstable, then for ω . m, λ σ (A ), ∃ ± ω ∈ d ω Re λω > 0, λω 0 ω−→→m Unstable for n = 1, k > 2 (above quintic) −2mi Unstable for n = 2, k > 1 (above cubic) ω < m ω m Unstable for n = 3, k > 2/3 = Proof: Rescale; use Schur reduction and Rayleigh-Schrodinger¨ perturbation theory. ✷ 7 σ(Aω) Bifurcations from σess (m + ω0)i λω Let 0 ω0 m λ 0 ω r r r ✈r r ≤ ≤ r r r r Theorem 2 ([Boussaid & Comech16]). (m − ω0)i Assume: λω σp(Aω), Re λω = 0, ∈ 6 t ✲ R λω λω0 i ω−→→ω0 ∈ Then: r r r r r r ✈r r r λ m + ω0, | ω0 | ≤ λ σ (A ) 0 i(m + ω0) ω0 ∈ p ω0 ∪ { } ∪ { } LAP methods of [Agmon75], [Berthier & Georgescu87]: u 1 c (D z)u 2 , z C [ m,m], s> 1/2, z m > δ k kH−s ≤ z,s,δk m − kLs ∈ \ − | ± | s u 1 := (1 + x ) u) 1 k kHs k | | kH 8 σ(Aω) Linear stability of NLD 2mi (m + ω)i 2ωi t i∂ ψ = D ψ (ψψ¯ )kβψ, x Rn t m − ∈ −iωt ψ(x,t) = φω(x)e (m − ω)i t ✲ ✲ t Theorem 3 ([Comech11]). If n 3, then λ = 2ωi σ (A ). ≤ ± ∈ p ω −2ωi t Theorem 4 ([Boussaid & Comech16]). n 3, k . 2/n: −2mi ≤ −iωt φωe are linearly stable for ω . m ω < m ω = m Including the “charge-critical” case k = 2/n 9 Eigenvalues λ = 2ωi in the Soler model ± λ = 2ωi is bad for proving asymptotic stability! ± [Boussaid & Cuccagna12], [Comech, Phan, Stefanov14] Asymptotic stability of solitons in Soler model for “radially symmetric” case: 1. perturbations orthogonal to translations; 2. perturbations orthogonal to 2ωi eigenvectors ± 10 SU(1,1) invariance of the Soler model and the Soler charge Theorem 5 ([Boussaid & Comech16]). 1. Soler model hamiltonian is invariant under transformations ψ(x,t) (a ibγ2C)ψ(x,t), a, b C, a 2 b 2 = 1 −→ − ∈ | | −| | a b 2. These transformations form the group SU(1, 1) U(1) ⊃ ¯b a¯ 3. Conserved charges: Q = ψ∗ψdx > 0 Λ = R ψt( iγ2)ψ dx C − ∈ R 4. Bi-frequency solutions: if φ(x)e−iωt is a solitary wave, so is ψ(x,t) = ae−iωtφ(x) beiωtiγ2C(φ(x)) − Note: if b 1, then ψ(x,t) e−iωt φ(x) be2iωtiγ2C(φ(x)) | | ≪ ≈ − 11 Q(ω), 10 10 8 8 E(ω) 6 6 4 4 2 2 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1 1 0.8 0.8 0.6 0.6 0.4 0.4 λ iR+ ∈ 0.2 0.2 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Figure 1: (1+1)D Soler model. LEFT: k = 2 (“charge-critical”); RIGHT: k = 3. TOP ROW: charge and energy of the solitary waves as functions of ω ∈ (0, 1). BOTTOM ROW: Spectrum on the upper half of the imaginary axis. Note the exact eigenvalue λ = 2ωi. 12 1 0.5 ) λ 0 Im( −0.5 −1 0 0.5 1 ω Figure 2: (2+1)D cubic “charge-critical” Soler model [Cuevas-Maraver et al.16] 13 1 0.5 ) λ 0 Im( −0.5 −1 0 0.5 1 ω Figure 3: (3+1)D cubic “charge-supercritical” Soler model [Cuevas-Maraver et al.16] 14 Theorem 6 ([Berkolaiko, Comech, Sukhtayev15]). Both Q′(ω) = 0 and E(ω) = 0 indicate collision of eigenvalues at λ = 0 15 −iωt 10 Q(φωe ) 5 −iωt E(φωe ) 0 -5 -1 -0.5 0 0.5 1 1 0.8 0.6 λ iR+ 0.4 ∈ 0.2 0 -1 -0.5 0 0.5 1 m<ω<m − Figure 4: “Quadratic” massive Thirring model, k = 1/2. TOP: energy and charge as functions of ω ∈ (−m, m). BOTTOM: The spectrum of the linearization at a solitary wave. Dotted eigenvalue collides with its opposite at the origin when ω⋆ ≈ −0.6276m, where E(ω⋆) = 0 15 References [Abenda98] S. Abenda, Solitary waves for Maxwell-Dirac and Coulomb-Dirac models, Ann. Inst. H. Poincare´ Phys. Theor.,´ 68 (1998), pp. 229–244. [Agmon75] S. Agmon, Spectral properties of Schrodinger¨ operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), pp. 151–218. [Alvarez & Carreras81] A. Alvarez & B. Carreras, Interaction dynamics for the solitary waves of a nonlinear Dirac model, Phys. Lett. A, 86 (1981), pp. 327–332. [Alvarez & Soler83] A. Alvarez & M. Soler, Energetic stability criterion for a nonlinear spinorial model, Phys. Rev. Lett., 50 (1983), pp. 1230–1233. [Alvarez & Soler86] A. Alvarez & M. Soler, Stability of the minimum solitary wave of a nonlinear spinorial model, Phys. Rev. D, 34 (1986), pp. 644–645. [Berkolaiko & Comech12] G. Berkolaiko & A. Comech, On spectral stability of solitary waves of nonlinear Dirac equation in 1D, Math. Model. Nat. Phenom., 7 (2012), pp. 13–31. 16 6 Q(ω) 5 4 3 2 E(ω) 1 0 1 -1 -0.5 0 0.5 1 0.8 0.6 0.4 λ iR+ ∈ 0.2 0 -1 -0.5 0 0.5 1 m<ω<m − Figure 5: Massive Thirring model with k = 1. TOP: energy and charge as functions of ω ∈ (−1, 1). BOTTOM: The spectrum of the linearization at a solitary wave on the upper half of the imaginary axis. No nonzero eigenvalues in completely integrable model. 17 5 Q(ω) 4 3 2 1 E(ω) 0 -11 -1 -0.5 0 0.5 1 0.8 0.6 0.4 λ iR+ ∈ 0.2 0 -1 -0.5 0 0.5 1 Figure 6: Massive Thirring model with k = 2, “charge critical”. TOP: energy and charge as functions of ω ∈ (−1, 1).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    23 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us