ZIP and Related Binary (104 Entries)

ZIP and Related Binary (104 Entries)

ZIP and RelatedBinaryBiblio.pdf © 2009, Timothy G. Gregoire, Yale University Last revised: December 2009 ZIP and Related Binary (104 entries) Articles: 1. Clapham, A.R. 1936. Over-dispersion in grassland communities and the use of statistical methods in plant ecology. J. Ecology 24: 232 – 251. 2. Cochran, W.G. (1943). Analysis of variance for percentages based on unequal numbers. Journal of the American Statistical Association 38(223): 287 – 301. 3. Anscombe, F.J. 1949. Note on a problem in probit analysis. The Annals of Applied Biology 36: 203 – 205. 4. Griffiths, D.A. 1973. Maximum likelihood estimation for the beta-binomial distribution and an application to the household distribution of the total number of cases of a disease. Biometrics 29: 637 – 648. 5. Kleinman, J.C. 1973. Proportions with extraneous variance: single and independent samples. Journal of the American Statistical Association 68(341): 46 – 54. 6. Williams, D.A. 1975. The analysis of binary responses from toxicological experiments involving reproduction and teratogenicity. Biometrics 31: 949 – 952. 7. Altham, P.M.E. 1978. Two generalizations of the binomial distribution. Appl. Statist. 27(2): 162 – 167. 8. Kupper, L.L. and Haseman, J.K. 1978. The use of a correlated binomial model for the analysis of certain toxicological experiments. Biometrics 34: 69 – 76. 9. Johnson and Kotz. ( ). Poisson Distribution. Chapter 4. 10. White, G.C. 1980. Statistical analysis of deer and elk pellet-group data. J. Wildl. Manage. 44(1): 121 – 131. 11. Diggle, P. 1982. Some statistical aspects of spatial distribution models for plants and trees. Studia Forestalia Suecica 162: 47 p. 12. Williams, D.A. 1982. Extra-binomial variation in logistic linear models. Appl. Statist. 31(2): 144 – 148. 13. Cox, D.R. 1983. Some remarks on overdispersion. Biometrika 70(1): 269 – 274. © 2009 Timothy G. Gregoire ZIP and RelatedBinaryBiblio.pdf © 2009, Timothy G. Gregoire, Yale University 2 14. Frome, E.L. 1983. The analysis of rates using Poisson regression models. Biometrics 39: 665 – 674. 15. Breslow, N.E. 1984. Extra-Poisson variation in log-linear models. Appl. Statist. 33(1): 38 – 44. 16. Esterby, S.R. and El-Shaarawi, A.H. 1984. Coliform concentrations in Lake Erie – 1966 to 1970. Hydrobiologia 111: 133 – 146. 17. Gourieroux, C., Monfort, A., Trognon, A. 1984. Pseudo maximum likelihood methods: applications to Poisson models. Econometrica 52(3): 701 – 720. 18. Rai, K. and Ryzin, J. V. 1985. A dose-response model for teratological experiments involving quantal responses. Biometrics 41: 1 – 9. 19. Cameron, A.C. and Trivedi, P.K. 1986. Econometric models based on count data: comparisons and applications of some estimators and tests. Journal of Applied Econometrics 1: 29 – 53. 20. King, G. (1986). Statistical models for political science even counts: Bias in conventional procedures and evidence for the exponential Poisson regression model*. Havard University. 21. Lee, L. (1986). Specification test for Poisson regression models. International Economic Review 27(3): 689 – 706. 22. Mullahy, J. (1986). Specification and testing of some modified count data models. Journal of Econometrics 33: 341 – 365. 23. Morton, R. 1987. A generalized linear model with nested strata of extra-Poisson variation. Biometrika 74(2): 247 – 257. 24. Williams, D.A. 1987. Dose-response models for teratological experiments (Reader reaction). Biometrics 43: 1013 – 1016. 25. Firth, D. 1988. Multiplicative errors: log-normal or gamma? J.R. Statist. Soc. B. 50(2): 266 – 268. 26. Zeger, S.L. 1988. A regression model for time series of counts. Biometrika 75(4): 621 – 629. 27. Dean, C. and Lawless, J.F. 1989. Tests for detecting overdispersion in Poisson regression models. Journal of the American Statistical Association 84(406): 467 – 472. © 2009 Timothy G. Gregoire ZIP and RelatedBinaryBiblio.pdf © 2009, Timothy G. Gregoire, Yale University 3 28. King, G. (1989A). A seemingly unrelated Poisson Regression Model. Sociological Methods and Research 17(3): 235 – 255. 29. King, G. (1989B). Event count models for international relations: generalizations and applications. International Studies Quarterly 33: 123 – 147. 30. King, G. (1989C). Variance specification in event count models: from restrictive assumptions to a generalized estimator. American Journal of Political Science 33(3): 762 – 784. 31. Beta-binomial derivations (1990). 32. ColinCameron, A. and Trivedi, P.K. 1990. Regression-based tests for overdispersion in the Poisson model. Journal of Econometrics 46: 347 – 364. 33. Seaman, J.W. Jr. and Jaeger, R.G. 1990. Statisticae Dogmaticae: a critical essay on statistical practice in ecology. Herpetologica 46(3): 337 – 346. 34. Grogger, J.T. and Carson, R.T. 1991. Models for truncated counts. Journal of Applied Econometrics 6: 225 – 238. 35. Kodell, R.L., Howe, R.B., Chen, J.J., and Gaylor, D.W. 1991. Mathematical modeling of reproductive and developmental toxic effects for quantitative risk assessment. Risk Analysis 11(4): 583 – 589. 36. Dean, C.B. 1992. Testing for overdispersion in Poisson and Binomial regression models. Journal of the American Statistical Association 87(418): 451 – 457. 37. Morgan, B.J.T. 1992. Analysis of quantal response data. QH 323.5 M67X. 38. Piegorsch, W.W. 1992. Complimentary log regression for generalized linear models. The American Statistician 46(2): 94 – 99. 39. Boos, D.D. 1993. Analysis of dose-response data in the presence of extrabinomial variation. Appl. Statist. 42(1): 173 – 183. 40. Liang, K. and McCullagh, P. 1993. The Consultant’s Forum: Case studies in Binary dispersion. Biometrics 49: 623 – 630. 41. Congdon, P. 1994. Spatiotemporal analysis of area mortality. The Statistician 43(4): 513 – 528. 42. Gaylor, D.W. 1994. Dose-response modeling. In Development Toxicology (C.A. Kimmel & Buelke-Sam, J. eds.). Raven Press Ltd., New York © 2009 Timothy G. Gregoire ZIP and RelatedBinaryBiblio.pdf © 2009, Timothy G. Gregoire, Yale University 4 43. Haseman, J.K. and Piegorsch, W.W. 1994. Statistical Analysis of Developmental Toxicity data. In Development Toxicology (C.A. Kimmel & Buelke-Sam, J. eds.). Raven Press Ltd., New York. 44. Liang, K. and Hanfelt, J. 1994. On the use of quasi-likelihood method in teratological experiments. Biometrics 50: 872 – 880. 45. Luceno, A. 1995. A family of partially correlated Poisson models for overdispersion. Computational Statistics and Data Analysis 20: 511 – 520. 46. Aitkin, M. 1996. A general maximum likelihood analysis of overdispersion in generalized linear models. Statistics and Computing 6: 251 – 262. 47. Piegorsch, W.W. and Casella, G. 1996. Emperical Bayes estimation for logistic regression and extended parametric regression models. Journal of Agricultural, Biological, and Environmental Statistics 1(2): 231 – 247. 48. Tempelman, R.J. and Gianola, D. 1996. A mixed effects model for overdispersed count data in animal breeding. Biometrics 52: 265 – 279. 49. Welsh, A.H., Cunningham, R.B., Donnelly, C.F., and Lindenmayer, D.B. 1996. Modelling the abundance of rare species: statistical models for counts with extra zeros. Ecological Modelling 88: 297 – 308. 50. White, G.C. and Bennets, R.E. 1996. Analysis of frequency count data using the negative binomial distribution. Ecology 77(8): 2549 – 2557. 51. Deb, P. and Trivedi, P.K. (1997). Demand for medical care by the elderly: a finite mixture approach. Journal of Applied Econometrics 12: 313 – 336. 52. Fitzmaurice, G.M., Heath, A.F., and Cox, D.R. 1997. Detecting overdispersion in large scale surveys: application to a study of education and social class in Britain. Appl. Statist. 46(4): 415 – 432. 53. Mullahy, J. (1997A). Heterogeneity, excess zeros, and the structure of count data models. Journal of Applied Econometrics 12: 337 – 350. 54. Mullahy, J. (1997B). Instrumental-variable estimation of count data models: applications to models of cigarette smoking behavior. The Review of Economics and Statistics: 586 – 593. 55. Mullahy, J. 1998. Much ado about two: reconsidering retransformation and the two-part model in health econometrics. Journal of Health Economics 17: 247 – 281. © 2009 Timothy G. Gregoire ZIP and RelatedBinaryBiblio.pdf © 2009, Timothy G. Gregoire, Yale University 5 56. Ten Have, T.R. and Chinchilli, V.M. 1998. Two-stage negative binomial and overdispersed Poisson models for clustered developmental toxicity data with random cluster size. Journal of Agricultural, Biological, and Environmental Statistics 3(1): 75 – 98. 57. Brandt, P.T. and Williams, J.T. (1999). Event Count Models. Department of political science, Indiana University, Bloomington. 58. Gilliland, D. and Schabenberger, O. (1999). Limits on pairwise association in equi-correlated binomial models. Michigan State University. 59. Gregoire, T. (1999). Correspondence with Oliver Schabenberge. 60. King, G. 1999. Binomial-beta hierarchical models for ecological inference. Sociological Methods and Research 28(1): 61- 90. 61. Lindsey, J.K. 1999. Response surfaces for overdispersion in the study of the conditions for fish eggs hatching. Biometrics 55: 149 – 155. 62. Rao, J.N.K. and Scott, A.J. 1999. A simple method for analyzing overdispersion in clustered Poisson data. Statistics in Medicine 18: 1373 – 1385. 63. Tempelman, R.J. and Gianola, D. (1999). Genetic Analysis of fertility in dairy cattle using negative binomial mixed models. J. Dairy Sci. 82: 1834 – 1847. 64. Wiens, B.L. 1999. When log-normal and Gamma models give different results: a case study. The American Statistician 53(2): 89 – 93. 65. Young, L.J., Campbell, N.L., and Capuano, G.A.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us