Entropy and Spontaneous Processes Pext

Entropy and Spontaneous Processes Pext

Entropy and Spontaneous Processes Pext dw = –Pext dV dV dq = C dT at constant V Tsurr v P, T dU = dq + dw closed system assume spontaneous process; irreversible path dq dq dS = rev reversible path, P = P T ext dq rev = T dS dw max = – P dV maximum |work| on expansion dU = T dS – P dV reversible path T dS – P dV = dq + dw dU independent of path Evaluate dU and dS for an irreversible process from a corresponding reversible process T dS = dq + P dV –Pext dV dq P P dq P P dS = + dV – ext dV = + − ext dV T T T T T T dq P - P dS = + ext dV P – P is the pressure gradient T T ext adiabatic: dq = 0 if P > P ext need a pressure gradient to do work P - P ext > 0 and the system expands so dV > 0 so that dS > 0 T adiabatic: dq = 0 if P < P ext P - P ext < 0 and the system contracts so dV < 0 so guarantees that dS > 0 T P - P for a reversible process P = P and dw = dw and then ext dV = 0 ext max T P - Pext for a spontaneous expansion |dw| < |dw | but dV > 0 max T P - P ext dV = "lost work" term energy wasted to increase entropy T dq "lost work" term always positive so dS ≥ Clausius inequality T dU P dS = + dV closed system, entropy production: dU = dq + dw T T Colby College now focus on the universe: dq surr dq dS univ = dS + dS surr dS surr = = − Tsurr Tsurr dq P - Pext dq dS univ = + dV − T T Tsurr 1 1 P Pext dS univ = − dq + − dV T Tsurr T T constant V: if T < T surr need a temperature gradient for heat transfer 1 1 − > 0 and the system absorbs energy so dq > 0 so that dS > 0 T Tsurr constant V: if T > T surr 1 1 − < 0 and the system liberates energy so dq < 0 so guarantees that dS > 0 T Tsurr heat transfer term is always positive for a spontaneous process, "lost work" term is always positive for a spontaneous process: Entropy of the universe always increases for spontaneous processes 1 1 − is the thermodynamic force for energy transfer in the form of heat T Tsurr P Pext − is the thermodynamic force for energy transfer in the form of work T T Tsurr − T P - Pext dS univ = dq + dV T T surr T Non-equilibrium, irreversible thermodynamics dS 1 1 dq P P dV univ = − + − ext rate of entropy production dt T Tsurr dt T T dt dq KA J = (T – T ) K= thermal conductivity = , A = contact area dt δ surr m K s KA – δ C t (T – Tsurr ) = (T o – Tsurr ) e P D. Kondepudi, I. Prigogine, Modern Thermodynamics , Wiley, Chichester, England, 1998, Chap. 3. K. S. Sanchez, R. A. Vergenz, "Understanding Entropy Using the Fundamental Stability Conditions," J. Chem. Ed. , 1994 , 71(7) , 562-566. Colby College .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    2 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us