Towards Simulations of Super-QCD

Towards Simulations of Super-QCD

N = 1 Supersymmetric SU(3) Gauge Theory - Towards simulations of Super-QCD Bj¨ornH. Wellegehausen with Andreas Wipf Theoretisch-Physikalisches Institut, FSU Jena 36th International Symposium on Lattice Field Theory, Lansing, Michigan, USA, 27.07.2018 Introduction 2 / 22 Supersymmetric QCD . describes the strong interaction in the MSSM. models the interaction of gluons and quarks with their superpartners, the gluinos and squarks. reduces to N = 1 SYM theory for infinitely heavy quarks and squarks. Interesting non-perturbative aspects are . the mass spectrum and the formation of supermultiplets. the phase diagram at finite temperature. the (Nc; Nf) phase diagram of the massless theory. Supersymmetry is broken by the lattice regularization ) Fine-tune set of operators to restore susy in the continuum limit Outline 3 / 22 1 Supersymmetric QCD in the continuum 2 One-loop effective potential 3 (Preliminary) Lattice results Supersymmetric QCD in the continuum Supersymmetric QCD in the continuum 4 / 22 N = 1 SU(N) SQCD 1 i L = tr − F F µν + λγ¯ µD λ + ¯ (iγµD + m) 4 µν 2 µ µ 1 2 p −D φyD φ − m2φyφ − g 2 φyT σ φ − i 2g φyλ¯P − ¯P¯λφ µ µ 2 3 φ+ P+ with φ = , P = , P¯ = γ0Pγ0 and SU(N) generators T φ− P− Gluons, real vector field Aµ in the adjoint representation (A) Gluinos, Majorana fermions λ in (A) Nf Quarks, Dirac fermions in the fundamental representation (F) 2Nf Squarks, complex scalars φ in the (F) Quark-Squark-Gluino Yukawa interaction SQCD =SYM+QCD+ Scalars+ interaction Supersymmetric QCD in the continuum - Symmetries 5 / 22 Preserved symmetries on the lattice Gauge symmetry Parity: x = (t; x) ! x 0 = (t; −x) 0 0 (x) ! γ0 (x ) ; λ(x) ! γ0λ(x ) and φ±(x) ! −φ∓(x): Baryon number conservation: iα iα U(1)B : ! e ; φ ! e φ ± - exchange symmetry Restrict number of operators that need to be fine-tuned Supersymmetric QCD in the continuum - Symmetries 6 / 22 Explicitly broken on the lattice Chiral symmetry: iαγ iασ ! e 5 ; φ ! e 3 φ anomaly spont. U(1)A −! Z2Nf −! Z2 R symmetry (also in N = 1 SYM): −iαγ iαγ ! e 5 ; λ ! e 5 λ anomaly spont. U(1)R −! Z2(Nc−Nf) −! Z2 anomaly free subgroup anomaly U(1)A ⊗ U(1)R −! U(1)AF Supersymmetric QCD in the continuum - Ward identities 7 / 22 Supersymmetry (N = 1 SYM): p p p µ δφ+ = − 2¯P ; δ = i 2(Dµφ)Pγ − 2mPσ1φ ; α µ α α µν α y α δAµ =−iγ¯ λ ;δ λ = −iσ Fµν − 2igγ5 φ T σ3φ Supersymmetric Ward identities 0 = QO¯ + OQ¯S 1 3 i 3 − tr F F µν = tr λγ¯ Dµλ SYM= N2 − 1 4 µν 8 2 µ 2 c 2 1 − tr F F µν + D φyDµφ + m2φyφ = N2 − 1 + 2N N 3 4 µν µ c c f Konishi anomaly 2 y λλ¯ = 32π m φ σ3φ : Supersymmetric QCD in the continuum - Relevant operators 8 / 22 Fine-tuning need to fine-tune a set of operators O to restore susy in the continuum limit N = 1 SYM: only gluino mass λλ¯ SQCD: all relevant (marginal) operators O with [O] ≤ d = 4 Mass dimension of constituent fields: 3 [A] = [φ] = 1 ; [ ] = [λ] = 2 + quadratic, cubic, and quartic interactions Supersymmetric QCD in the continuum - Relevant operators 9 / 22 quadratic interactions SU(N) gauge invariance and baryon number conservation: F¯ ⊗ F and A ⊗ A Quark and gluino masses ¯ Γ and λ¯ Γ λ with Γ = f1; γ5g 2 squark masses y M1 = tr Φ and M2 = tr (Φσ1) with Φrs = φr φs λγ¯ 5λ breaks parity: Twist can be used to improve the extrapolation to the chiral limit ) next talk by Marc Steinhauser Supersymmetric QCD in the continuum - Relevant operators 10 / 22 cubic interactions SU(N) gauge invariance and baryon number conservation: F¯ ⊗ A ⊗ F only operator compatible with all symmetries is i φyλ¯ P − ¯ P¯ λ φ : appears already in the Lagrange function coupling can be absorbed in a rescaling of the scalar field Supersymmetric QCD in the continuum - Relevant operators 11 / 22 quartic interactions only scalar fields possible SU(N) gauge invariance and baryon number conservation: 1 ⊗ 1 ; A ⊗ A ; F ⊗ F¯ ; R ⊗ R¯ use SU(N) Fierz identities to reduce this 4 types to 1 ⊗ 1 5 independent operators for Nf = 1 2 2 2 2 V1 =Φ++ + Φ−− ; V2 = Φ+− + Φ−+ ; V3 = Φ++Φ−− ; V4 =Φ+−Φ−+ ; V5 = (Φ+− + Φ−+) (Φ++ + Φ−−) : V2 and V5 break chiral symmetry Supersymmetric QCD in the continuum 12 / 22 General Euclidean Lagrange function 1 1 L = tr F 2 + Z D φyD φ + Z m2 M + Z 2 λ V g 2 4 µν φ µ µ φ i i φ i i 1 p + tr λ¯ (γ D − m ) λ + ¯ (γ D − m ) + i 2 φyλ¯ P − ¯ P¯ λ φ 2 µ µ g µ µ q 9 fine-tuning parameters for Nf = 1 and fixed quark mass mq bare gluino mass mg 2 squark masses mi squark wave function renormalization Zφ (Yukawa interaction) 5 squark quartic couplings λi Supersymmetric continuum action: λλ¯ ¯ Zφ M1 M2 V1 V2 V3 V4 V5 2 0 m 1 m 0 (Nc − 1)=Nc 0 1=Nc −1 0 One-loop effective potential One-loop effective potential 13 / 22 Fine-tuning of squark potential guided by lattice perturbation theory Integration over fermions 1 1 S = S + S − tr ln D= − m − tr ln D= − tr ln 1 − ∆ Y ∆ Y¯ y Gauge Squark 2 λ 2 λ ξ Calculate 1-loop effective squark potential 2 ! 2 1-loop 1 δ S['] 1 δ S[φ] Veff (φ) = V (φ) + tr ln − tr ln 2 δ'(x)δ'(y) '=φ 2 δΨ(x)δΨ(y) | {z } | {z } Bosonic contribution Fermionic contribution One-loop effective potential - Continuum result 14 / 22 Continuum VB(p) =CF (2∆φ + 6∆G ) M1 2 2 2 2 2 2 + b1(∆φ; ∆G ; Nc) V1 + b3(∆φ; ∆G ; Nc) V3 + b4(∆φ; ∆G ; Nc) V4 VF(p) =−8CF∆φ M1 2 2 2 2 2 2 + f1(∆φ; ∆G ; m; Nc) V1 + f3(∆φ; ∆G ; m; Nc) V3 + f4(∆φ; ∆G ; m; Nc) V4 1 1 Propagators ∆G = p2 and ∆φ = p2+m2 Only operators of the tree-level potential appear at 1-loop: M1 ; V1 ; V3 ; V4 Quadratic divergences cancel as expected Quartic couplings bi and fi contain logarithmic divergences One-loop effective potential - Lattice result 15 / 22 Lattice Wilson mass and discrete lattice momenta break supersymmetry Replace continuum propagators by lattice propagators All operators are generated at 1-loop continuum X lattice X ^ Veff = λi (k) Oi and Veff = λi (k) Oi k k Improved lattice action SImproved(m; g) = S(m; gjmq; mg; Zφ) + Vcounter(m) 7 X X Vcounter(m) = ∆λi (m; V ; Nc) Oi with ∆λi = (λi (k) − λ^i (k)) i=1 k One-loop effective potential - Lattice result 16 / 22 L M1 M2 V1 V2 V3 V4 V5 8 -1.3793 -0.63618 0.30573 -0.05689 0.25293 0.21088 0.07710 16 -1.3785 -0.63665 0.31012 -0.05722 0.25888 0.22181 0.08316 32 -1.3784 -0.63666 0.31081 -0.05723 0.25983 0.22434 0.08436 64 -1.3784 -0.63666 0.31095 -0.05723 0.26003 0.22495 0.08464 128 -1.3784 -0.63666 0.31099 -0.05723 0.26008 0.22510 0.08471 256 -1.3784 -0.63666 0.31100 -0.05723 0.26009 0.22514 0.08473 (Preliminary) Lattice results (Preliminary) Lattice results - Setup 17 / 22 Lattice setup and phase of the Pfaffian Wilson gauge action with β = 6:3 ::: 9:9, m = 0:5, mq = −0:4 and volume V = 83 × 16 Wilson fermions / rational-HMC algorithm 1.0000 1.0001 0.9998 1.0000 0.9996 0.9999 0.9994 0.9998 0.9997 E E 0.9992 φ φ i i 0.9996 e e 0.9990 0.9995 Re Re 0.9988 D D 0.9994 4 0.9986 V = 3 0.9993 4 0.9984 V = 4 mg = −1:14 4 0.9992 V = 5 mg = −1:18 0.9982 4 0.9991 V = 6 mg = −1:22 0.9980 0.9990 -1.28 -1.26 -1.24 -1.22 -1.20 -1.18 -1.16 -1.14 -1.12 0 200 400 600 800 1000 1200 1400 mg V Extrapolation: 0:996 ::: 0:998 @ 83 × 16 and 0:94 ::: 0:97 @ 163 × 32 (Preliminary) Lattice results - Setup 18 / 22 Fine-tuning of mg adjoint pion fundamental pion 0.8 0.92 unimproved, m = 0:5 0.90 0.7 improved, m = 0:5 0.88 improved, m = 0:3 0.6 0.86 0.84 0.5 0.82 m m 0.4 0.80 0.78 0.3 0.76 unimproved, m = 0:5 0.74 0.2 improved, m = 0:5 0.72 improved, m = 0:3 0.1 0.70 -1.16-1.14-1.12-1.10-1.08-1.06-1.04-1.02-1.00-0.98 -1.16-1.14-1.12-1.10-1.08-1.06-1.04-1.02-1.00-0.98 mg mg we use the adjoint pion mass to fine-tune mg fundamental pion mass almost independent of gluino mass and squark mass (Preliminary) Lattice results - Setup 19 / 22 SQCD compared to SYM -0.60 -0.70 -0.80 -0.90 mg -1.00 -1.10 -1.20 SQCD SYM -1.30 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 β massless gluino critical lines of SQCD and SYM coincide almost independent of squark /quark mass and scalar potential (Preliminary) Lattice results - Setup 20 / 22 Unimproved vs improved Ward identity 0.07 0.07 0.06 0.06 0.05 0.05 W W 0.04 0.04 0.03 0.03 0.02 0.02 -1.30 -1.20 -1.10 -1.00 -0.90 -0.80 -0.70 -0.60 -0.50 -1.30 -1.20 -1.10 -1.00 -0.90 -0.80 -0.70 -0.60 -0.50 mg mg 2 hS i + D φyDµφ + m2φyφ = N2 − 1 + 2N N = 14 3 W µ c c f (Preliminary) Lattice results - Setup 20 / 22 Unimproved vs improved Ward identity 0.065 unimproved 0.060 improved 0.055 0.050 0.045 W 0.040 0.035 0.030 0.025 0.020 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 β b Fit to W (β) = W1 + aβ unimproved improved W1 = 0:008(3) and W1 = −0:003(11) Conclusions and Outlook 21 / 22 Conclusions and Outlook No severe sign problem in lattice simulations One-loop improved lattice action Preliminary lattice results for Ward identities, the chiral critical line, fundamental / adjoint pion mass Fine-tuning of the Yukawa interaction Gluino-glue and Quark-Squark bound states Literature M.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    26 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us