Chapter 2 Angular Momentum, Hydrogen Atom, and Helium Atom

Chapter 2 Angular Momentum, Hydrogen Atom, and Helium Atom

Chapter 2 Angular Momentum, Hydrogen Atom, and Helium Atom Contents 2.1 Angular momenta and their addition . .24 2.2 Hydrogenlike atoms . .38 2.3 Pauli principle, Hund's rules, and periodical table . 42 2.4 Ground state of helium atom: 1st approximation . .48 Basic Questions A. What are the eigenvalues of angular momentum operator? B. What are the quantum numbers of a state of the single electron in hydrogen atom? C. What is total electron spin of ground-state helium atom, and the spin eigenstate? 23 24CHAPTER 2. ANGULAR MOMENTUM, HYDROGEN ATOM, AND HELIUM ATOM 2.1 Angular momentum and addition of two an- gular momenta 2.1.1 Schr¨odinger Equation in 3D Consider the Hamiltonian of a particle of mass m in a central potential V (r) h¯2 H^ = 2 + V (r) : −2mr Since V (r) depends on r only, it is natural to express 2 in terms of spherical coordinates (r; θ; ') as r 2 2 1 @ 2 @ 1 @ @ 1 @ = r + sin θ + 2 : r r2 @r @r ! r2 sin θ @θ @θ ! r2 sin θ @'2 Operators in Spherical Coordinates A. Laplacian operator By coordinate transformation between Cartesian (x; y; z) and spherical coordi- nates (r; θ; ') x = r sin θ cos '; r = x2 + y2 + z2 q x2 + y2 y = r sin θ sin '; tan2 θ = z2 y z = r cos θ; tan ' = x we have @r @r @r = sin θ cos '; = sin θ sin '; = cos θ @x @y @z @θ 1 @θ 1 @θ 1 = cos θ cos '; = cos θ sin '; = sin θ @x r @y r @z −r @' 1 sin ' @' 1 cos ' @' = ; = ; = 0 : @x −r sin θ @y −r sin θ @z Using the derivative rule @ @r @ @θ @ @' @ = + + @x @x @r @x @θ @x @' 2.1. ANGULAR MOMENTUM AND ADDITION OF TWO ANGULAR MOMENTA25 @ 1 @ 1 sin ' @ = sin θ cos ' + cos θ cos ' @r r @θ − r sin θ @' @ @ 1 @ 1 cos ' @ = sin θ sin ' + cos θ sin ' @y @r r @θ − r sin θ @' @ @ 1 @ = cos θ sin θ @z @r − r @θ Therefore @2 @2 @2 @ 1 @ 1 sin ' @ + + = sin θ cos ' + cos θ cos ' @x2 @y2 @z2 @r r @θ − r sin θ @' ! @ 1 @ 1 sin ' @ sin θ cos ' + cos θ cos ' × @r r @θ − r sin θ @'! @ 1 @ 1 cos ' @ + sin θ sin ' + cos θ sin ' @r r @θ − r sin θ @' ! @ 1 @ 1 cos ' @ sin θ sin ' + cos θ sin ' × @r r @θ − r sin θ @' ! @ 1 @ @ 1 @ + cos θ sin θ cos θ sin θ @r − r @θ ! × @r − r @θ ! and this is equal to, after some considerable algebra @2 1 @2 1 @2 2 @ cot θ @ 2 = + + + + r @r2 r2 @θ2 r2 sin2 θ @'2 r @r r2 @θ 2 1 @ 2 @ 1 @ @ 1 @ = r + sin θ + 2 r2 @r @r ! r2 sin θ @θ @θ ! r2 sin θ @'2 1 @ @ 1 = r2 + A^ (θ; ') r2 @r @r ! r2 with definition 2 ^ 1 @ @ 1 @ A (θ; ') sin θ + 2 : ≡ sin θ @θ @θ ! sin θ @'2 B. Angular momentum operators @ @ Consider first the z-component, using the above formulas for @x and @y @ @ L^z = ih¯ x y − @y − @x! @ 1 @ 1 cos ' @ = ( ih¯) r sin θ cos ' sin θ sin ' + cos θ sin ' − @r r @θ − r sin θ @' ! 26CHAPTER 2. ANGULAR MOMENTUM, HYDROGEN ATOM, AND HELIUM ATOM @ 1 @ 1 sin ' @ ( ih¯) r sin θ sin ' sin θ cos ' + cos θ cos ' − − @r r @θ − r sin θ @' ! @ = ih¯ − @' similarly we can derive the x- and y-components as @ @ L^x = ih¯ sin ' cot θ cos ' − − @θ − @' ! @ @ L^y = ih¯ + cos ' cot θ sin ' : − @θ − @' ! >From the definition of the raising and lowering operators L^ L^ iL^ ≡ x y it is straightforward to obtain i' @ @ L^ = ih¯e i cot θ : − @θ − @' ! C. Angular momentum square In order to obtain the square of angular momentum operator in the spherical 2 coordinates, consider L^x 2 ^ 2 Lx @ @ 2 = sin ' + cot θ cos ' h¯ @θ @' ! − @ @ @ @ @ @ = sin ' sin ' + sin ' cot θ cos ' + cot θ cos ' sin ' @θ @θ @θ @' @' @θ @ @ + cot θ cos ' cot θ cos ' @' @' @2 @ @ @ = sin2 ' + sin ' cos ' cot θ + cot θ cos2 ' @θ2 @θ @' @θ @2 @ @2 + cot θ cos ' sin ' cot2 θ cos ' sin ' + cot2 θ cos2 ' @'@θ − @' @'2 2 ^ 2 Ly @ @ 2 = cos ' cot θ sin ' h¯ @θ − @'! − @2 @ @ @ = cos2 ' sin ' cos ' cot θ + cot θ sin2 ' @θ2 − @θ @' @θ @2 @ @2 cot θ cos ' sin ' + cot2 θ sin ' cos ' + cot2 θ sin2 ' − @'@θ @' @'2 2.1. ANGULAR MOMENTUM AND ADDITION OF TWO ANGULAR MOMENTA27 now L^2 L^2 + L^2 + L^2 @2 @ @2 = x y z = + cot θ + cot2 θ + 1 h¯2 h¯2 @θ2 @θ @'2 − − 1 @ @ 1 @2 = sin θ + = A^ (θ; ') sin θ @θ @θ sin2 θ @'2 1 @ @ 1 L^2 = sin θ z sin θ @θ @θ − sin2 θ h¯2 where A^ (θ; φ) is as defined before in the Laplacian 2. The Schr¨odinger eq. becomes r 2 2 h¯ 1 @ 2 @ 1 @ @ 1 @ r + sin θ + 2 + V (r) Ψ (r; θ; ') (−2m "r2 @r @r ! r2 sin θ @θ @θ ! r2 sin θ @'2 # ) = EΨ (r; θ; ') or h¯2 1 @ @ L^2 r2 + V (r) + Ψ (r; θ; ') = EΨ (r; θ; ') : ("−2m r2 @r @r ! # 2mr2 ) This eq. is separable. Let Ψ (r; θ; ') = R (r) Y (θ; ') where Y (θ; ') is assumed to be the eigenstate of L^2 with eigenvalue λ L^2Y (θ; ') = λY (θ; ') we have the equation for the radial part of wavefunction h¯2 1 @ @ λ r2 + V (r) + R (r) = ER (r) : ("−2m r2 @r @r ! # 2mr2 ) The solution of this equation depends on the given potential V (r). But the solution for the angular part of wavefunction Y (θ; ') is universal and can be discussed in general. 2.1.2 Operators and their algebra Classically, angular momentum is defined as L = r p × 28CHAPTER 2. ANGULAR MOMENTUM, HYDROGEN ATOM, AND HELIUM ATOM or in component form L = yp zp ; L = zp xp ; L = xp yp x z − y y x − z z y − x in QM, they all become operator L^ = y^p^ z^p^ ; L^ = z^p^ x^p^ ; L^ = x^p^ y^p^ : x z − y y x − z z y − x Their commutation relations are given by L^ ; L^ = [y^p^ z^p^ ; z^p^ x^p^ ] x y z − y x − z h i = [y^p^z; z^p^x] + [z^p^y; x^p^z] = y^[p^z; z^] p^x + [z^; p^z] p^yx^ = ih¯y^p^ + ih¯p^ x^ − x y = ih¯L^z L^y; L^z = ih¯L^x h i L^z; L^x = ih¯L^y h i we can memorize these relations by L^ L^ = ih¯L^ : × In spherical coordinates, these operators are expressed as @ @ L^x = ih¯ sin ' cot θ cos ' − − @θ − @'! @ @ L^y = ih¯ + cos ' cot θ sin ' − @θ − @' ! @ L^ = ih¯ z − @' and 2 ^2 2 1 @ @ 1 @ L = h¯ sin θ + 2 : − sin θ @θ @θ sin θ @'2 ! Hence the Laplacian operator 2 and Hamiltonian take the following simple form r 1 @ @ L^2 2 = r2 r r2 @r @r − h¯2r2 h¯2 1 @ @ 1 L^2 H^ = r2 + V (r) + −2m r2 @r @r 2m r2 2.1. ANGULAR MOMENTUM AND ADDITION OF TWO ANGULAR MOMENTA29 2 It is easy to see L^z commutes with L^ 2 L^z; L^ = 0 h i and L^2 commute with operators H^ , L^2; H^ = 0 : h i 2 2 (note: we also have L^x; L^ = L^y; L^ = 0) Therefore we can find a wavefunction h i h 2 i which is eigenfunctions to both H^ ; L^ ; and L^z. Furthermore, since they are separable, the eigenfunction of H^ can be written in general as Ψn:l;m (r; θ; ') = Rnl (r) Θl (θ) Φm (') = Rnl (r) Yl;m (θ; ') with @ L^ Φ (') = λ Φ (') i Φ (') = λ Φ (') z m m m ! − @' m m m 2 2 ^2 h¯ @ @ λm L Yl;m (θ; ') = λl;mYl;m (θ; ') sin θ + 2 Θl (θ) = λl;mΘl (θ) ! −sin θ @θ @θ sin θ ! H^ Ψn:l;m (r; θ; ') = λn;l;mΨn:l;m (r; θ; ') 2 h¯ 1 @ 2 @ 1 λl;m r + V (r) + Rnl (r) = λn;l;mRnl (r) ! −2µ r2 @r @r 2µ r2 ! In Dirac notation Φ (') m m ! j i Y (θ; ') l; m l;m ! j i Ψ (r; θ; ') n; l; m : n:l;m ! j i Instead of dealing with L^x; L^y, and L^z, one can define angular raising and lowering + operators L^ and L^− as, i' @ @ L^ L^x iL^y = ihe¯ i cot θ ≡ − @θ − @' ! + and we have the equivalent set L^x; L^y, and L^z or L^−; L^ and L^z. The algebra for this 2nd set is more convenient. It is easy to show the commutations between three operators Lz; L are given by + L^ ; L^ = h¯L^; L^ ; L^− = 2¯hL^ : z z h i h i 30CHAPTER 2. ANGULAR MOMENTUM, HYDROGEN ATOM, AND HELIUM ATOM Note: Compare this algebra with harmonic oscillator a;^ a^y = 1. These algebra will determine the eigenfunctions and eigenvalues of L^2. Ith is alsoi easy to derive ^+ ^ ^2 ^2 ^ L L− = L Lz + h¯Lz; + 2 − 2 L^−L^ = L^ L^ h¯L^ ; − z − z and 2 2 + 2 + 2 1 + + L^ = L^ + h¯L^ + L^−L^ = L^ h¯L^ + L^ L^− = L^ + L^ L^− + L^−L^ : z z z − z z 2 ^ 1 Note: compare this with harmonic oscillator H = h!¯ a^ya^ + 2 .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    28 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us