Lecture 7: Optical Waveguides

Lecture 7: Optical Waveguides

Lecture 7: Optical waveguides Petr Kužel Types of guiding structures: • Planar waveguides (integrated optics) • Fibers (communications) Theory: • Rays and field approach • Various shapes and index profiles Attenuation and dispersion Coupling of light into the waveguide Homogeneous planar waveguide x x z n n n y c s f n α Series of total internal reflections (angle of incidence f): α > ns > nc sin f n f n f Transverse resonance condition nc α f E nf 1 E2 ns = ( ω − − α + α ) E1 E10 exp i t ikn f ( x cos f z sin f ) = ( ω − α + α ) E2 E20 exp i t ikn f (x cos f z sin f ) δ ()= i c = ()= E1 x h e E2 x h Phase change δ ()= i s = ()= E2 x 0 e E1 x 0 during total reflection Waveguide equation Continuity of E1 and E2 lead to: (− α + δ + δ )= exp 2ikn f hcos f i c i s 1 Waveguide dispersion equation: α = δ + δ + π 2kn f hcos f c s 2 m Solution numeric or graphic kh increase → number of modes increase symmetric waveguide → at least one guided mode non-symmetric waveguide, small kh → no guided mode Graphic solution Graphic solution of the waveguide equation 40 α 2 k nf h cos f 10π 30 8π TM3 20 π Phase TE3 6 TM2 TE2 TM1 4π 10 TE1 TM0 2π TE0 0 α α 0 30 c s 60 90 α f Longitudinal propagation nc α E nf f 1 E2 ns Longitudinal propagation constant: ω β = kn sin α = n sin α (ω) f f c f f Effective refractive index: β N = = n sin α k f f Waveguide dispersion curves: β(ω) or N(ω) Waveguide dispersion Waveguide dispersion N(ω) N = nf Guided modes TE0-3 TM0-3 N 0 2 1 3 N = ns ω Waveguide dispersion Waveguide dispersion β(ω) Guided modes TE0-3 TM0-3 β = n ω/c β f 3 2 β ω 1 = ns /c 0 ω Wave approach to waveguides Linear combinations of the basis functions should satisfy the continuity conditions at the interfaces • One-dimensional planar waveguide: harmonic plane waves • Rectangular waveguide: analytic solution does not exist • Circular waveguide: Bessel functions • Circular waveguide with parabolic n-profile: Gaussian beams Planar waveguide E H + − E k k 0 0 α α 0 0 z n0 H E Ei0 r0 E 01 y E (tangential) Et1 s1 x n1 α 1 E H − + k k (tangential) E 1 1 i1 Er1 E12 n2 E H E − + k2 k2 H Attenuation in waveguides Mechanisms: • Intrinsic – Residual absorption (SiO2, impurities: OH ) Rayleigh scattering (proportional to ω4) •Extrinsic • Large inhomogeneities (fabrication of the fiber) • geometrical irregularities (curvature, surface defects…) • Losses at the fiber input and output (Fresnel reflection, aperture...) λ = µ SiO2 fibers: 0.2 dB/km with 1.55 m I α[dB] =10 log 1 I2 Attenuation in waveguides Dispersion Broadening of pulse during the propagation (limits the rate of the information transfer) 1. Modal dispersion (tens of ns per km) ∆τ n − n 1 = Nmax − Nmin ≈ f s Single mode fibers, gradient index profile L c c c 2. Material dispersion (hundreds of ps per km) ∆τ λ d 2n 2 = − f ∆λ µ L c dλ2 It vanishes for SiO2 at 1.27 m ω ∆τ λ 2 3. Waveguide dispersion (N depends on ) 3 = − d N ∆λ L c dλ2 (tens of ps per km).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    13 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us