Here Is an Example Where I Analyze the Lags Needed to Analyze Okun's

Here Is an Example Where I Analyze the Lags Needed to Analyze Okun's

Here is an example where I analyze the lags needed to analyze Okun’s Law. open okun gnuplot g u --with-lines --time-series These look stationary. Next, we’ll take a look at the first 15 autocorrelations for the two series. corrgm diff(u) 15 corrgm g 15 These are autocorrelated and so are these. I would expect that a simple regression will not be sufficient to model this relationship. Let’s try anyway. Run a simple regression and look at the residuals ols diff(u) const g series ehat=$uhat gnuplot ehat --with-lines --time-series These look positively autocorrelated to me. Notice how the residuals fall below zero for a while, then rise above for a while, and repeat this pattern. Take a look at the correlogram. The first autocorrelation is significant. More lags of D.u or g will probably fix this. LM test of residuals smpl 1985.2 2009.3 ols diff(u) const g modeltab add modtest 1 --autocorr --quiet modtest 2 --autocorr --quiet modtest 3 --autocorr --quiet modtest 4 --autocorr --quiet Breusch-Godfrey test for first-order autocorrelation Alternative statistic: TR^2 = 6.576105, with p-value = P(Chi-square(1) > 6.5761) = 0.0103 Breusch-Godfrey test for autocorrelation up to order 2 Alternative statistic: TR^2 = 7.922218, with p-value = P(Chi-square(2) > 7.92222) = 0.019 Breusch-Godfrey test for autocorrelation up to order 3 Alternative statistic: TR^2 = 11.200978, with p-value = P(Chi-square(3) > 11.201) = 0.0107 Breusch-Godfrey test for autocorrelation up to order 4 Alternative statistic: TR^2 = 11.220956, with p-value = P(Chi-square(4) > 11.221) = 0.0242 Yep, that’s not too good. Significant lags (jointly tested at 5%) up through 4. See that the p-values are all less than .05. This regression clearly needs work. Add a couple of lags to g (finite distributed lag model) and repeat. reg D.u L(0/3).g estat bgodfrey, lags(1 2 3 4) Model 3: OLS, using observations 1986:1-2009:3 (T = 95) Dependent variable: d_u coefficient std. error t-ratio p-value ---------------------------------------------------------- const 0.580975 0.0538893 10.78 6.92e-018 *** g -0.202053 0.0330131 -6.120 2.39e-08 *** g_1 -0.164535 0.0358175 -4.594 1.41e-05 *** g_2 -0.0715560 0.0353043 -2.027 0.0456 ** g_3 0.00330302 0.0362603 0.09109 0.9276 Mean dependent var 0.027368 S.D. dependent var 0.289329 Sum squared resid 2.735164 S.E. of regression 0.174329 R-squared 0.652406 Adjusted R-squared 0.636957 F(4, 90) 42.23065 P-value(F) 6.77e-20 Log-likelihood 33.71590 Akaike criterion -57.43179 Schwarz criterion -44.66241 Hannan-Quinn -52.27200 rho 0.358631 Durbin-Watson 1.274079 Breusch-Godfrey LM test for autocorrelation --------------------------------------------------------------------------- lags(p) | chi2 df Prob > chi2 -------------+------------------------------------------------------------- 1 | 12.638 1 0.0004 2 | 13.152 2 0.0014 3 | 13.725 3 0.0033 4 | 15.191 4 0.0043 --------------------------------------------------------------------------- H0: no serial correlation The last lag on g is not significant but the residuals are still autocorrelated. I suspect that the model is autoregressive. Add a lag of Du. In doing so, we should be able to reduce the order of the distributed lag. Model 4: OLS, using observations 1985:4-2009:3 (T = 96) Dependent variable: d_u coefficient std. error t-ratio p-value -------------------------------------------------------- const 0.378010 0.0578398 6.535 3.47e-09 *** g -0.184084 0.0306984 -5.997 3.91e-08 *** g_1 -0.0991552 0.0368244 -2.693 0.0084 *** d_u_1 0.350116 0.0845730 4.140 7.69e-05 *** Mean dependent var 0.025000 S.D. dependent var 0.288736 Sum squared resid 2.422724 S.E. of regression 0.162277 R-squared 0.694101 Adjusted R-squared 0.684126 F(3, 92) 69.58413 P-value(F) 1.40e-23 Log-likelihood 40.39577 Akaike criterion -72.79155 Schwarz criterion -62.53415 Hannan-Quinn -68.64534 rho -0.024372 Durbin's h -0.419594 Breusch-Godfrey test for first-order autocorrelation Alternative statistic: TR^2 = 0.169654, with p-value = P(Chi-square(1) > 0.169654) = 0.68 Breusch-Godfrey test for autocorrelation up to order 2 Alternative statistic: TR^2 = 0.271347, with p-value = P(Chi-square(2) > 0.271347) = 0.873 Breusch-Godfrey test for autocorrelation up to order 3 Alternative statistic: TR^2 = 3.896381, with p-value = P(Chi-square(3) > 3.89638) = 0.273 Breusch-Godfrey test for autocorrelation up to order 4 Alternative statistic: TR^2 = 6.140635, with p-value = P(Chi-square(4) > 6.14064) = 0.189 Bingo. ARDL(1,1). This looks pretty good. Finally, take a last look at the correlogram of the residuals. And plotting the residuals: gnuplot ehat --with-lines --time-series --output=display COMPLETE CODE open okun gnuplot g u --with-lines --time-series corrgm diff(u) 15 corrgm g 15 ols diff(u) const g series ehat=$uhat gnuplot ehat --with-lines --time-series --output=display corrgm ehat smpl 1985.2 2009.3 ols diff(u) const g modeltab add modtest 1 --autocorr --quiet modtest 2 --autocorr --quiet modtest 3 --autocorr --quiet modtest 4 --autocorr --quiet ols diff(u) const g(0 to -3) modeltab add modtest 1 --autocorr --quiet modtest 2 --autocorr --quiet modtest 3 --autocorr --quiet modtest 4 --autocorr --quiet ols diff(u) const g(0 to -1) d_u(-1) modeltab add series ehat = $uhat modtest 1 --autocorr --quiet modtest 2 --autocorr --quiet modtest 3 --autocorr --quiet modtest 4 --autocorr --quiet modeltab show corrgm ehat gnuplot ehat --with-lines --time-series --output=display .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    7 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us