Exotic Nuclei I

Exotic Nuclei I

Exotic Nuclei I “Proton-rich nuclides” Michael Thoennessen FRIB/NSCL Michigan State University What are “exotic nuclei”? “Nuclei with ratios of neutron number N to proton number Z much larger or much smaller than those of nuclei found in nature.” McGraw-Hill Concise Encyclopedia of Physics. (2002). Retrieved August 5 2015 from http://encyclopedia2.thefreedictionary.com/Exotic+nuclei Terminology: Exotic nuclei? Rare isotopes? Radioactive nuclei? Nuclei/Nuclides/Isotopes Reaching the extremes neutron-deficient N=Z proton-rich superheavy nuclides neutron-rich Nucleus - Nuclide - Isotope Nucleus: The nucleus is the small, dense region consisting of protons and neutrons at the center of an atom. Nuclide: A nuclide is an atomic species characterized by the specific constitution of its nucleus, i.e., by its number of protons Z, its number of neutrons N, and its nuclear energy state. Isotopes: Different nuclides having the same atomic number are called isotopes. A species of atoms identical as regards atomic number (proton number) and mass number (nucleon number) should be indicated by the word ‘nuclide’, not by the word ‘isotope’. https://en.wikipedia.org/wiki/Nuclide E.R. Cohen and P. Giacomo, Document I.U.P.A.P.-25 (SUNAMCO 87-1) Origin of the term isotope http://blogs.nature.com/thescepticalchymist/2013/11/isotope-day.html B. F. Thornton and Shawn C. Burdette, Nature Chemistry 5 (2013) 979 December 4: Isotope Day http://www.gla.ac.uk/hunterian/visit/events/headline_296351_en.html December 4: Isotope day ..nothing to do with… Different types of nuclides? Stable: Nuclides which do not decay 128 24 (What about Te: T1/2 = 2.2∙10 years) Radioactive: Nuclides which decay with a half-life longer than about 10-12s (8Be is unstable: -17 T1/2 = 82 as (8.2∙10 s) Bound: With respect to neutron or proton emission A = 21 isobars radioactive/ unstable unbound stable Decay of proton-rich nuclei Unbound nuclides can still be radioactive: 121 Pr: T1/2 = 12 ms (proton emitter) Unbound nuclides do not have to decay by proton emission: 135 Tb: T1/2 = 1 ms + Sp = –1.19 MeV - β emitter Coulomb/angular momentum barrier proton unbound proton radioactive neutron unbound Exotic proton-rich nuclides Nuclides with a very large proton access: Z/N = 1 Ratio: Z/N = 2 Z/N = ∞ : 1H Z/N = 2 : 3He,9C Difference: Z–N = 8 : 48Ni Z/N = ∞ Unbound proton-rich exotic nuclides Z/N = 1 Z/N = 2 Z/N = 3 : 4Li,8C Z/N = 3 Z/N = ∞ Great tool: LISE++ http://lise.nscl.msu.edu First stop for information: NNDC/AME www.nndc.bnl.gov Atomic Mass Evaluation: AME Only as a first step: Always check the original literature! https://www-nds.iaea.org/amdc/ http://amdc.impcas.ac.cn/ Discoveries are driven by new technologies Fusion evaporation Projectile WWII Reactors fragmentation First accelerators Mass spectroscopy Radio- activity M. T. and B.M. Sherrill, Nature 473 (2011) 25 http://www.nscl.msu.edu/~thoennes/isotopesTimeline Movie First new isotope produced with an accelerator 7Li + p 8Be 2α J.D. Cockcroft and E.T.S. Walton, Nature 129 (1932) 649 Proton-unbound nuclei 9B: First proton unbound isotope (1940) 9Be(p,n)9B 6Be, 7B, and 8C: 2,3, and 4-proton unbound isotopes R.O. Haxby et al., Phys. Rev. 58 (1940) 1035 1957: Two-proton unbound nucleus: 6Be 6Li(p,n)6Be G.F. Bogdanov et al., J. Nucl. Ener. 8 (1958) 148 1967: Three-proton unbound nucleus: 7B 10B(3He,6He)7B R.L. McGrath et al., Phys. Rev. Lett. 19 (1967) 1442 1974: Four-proton unbound nucleus: 9C 12C(α,8He)8C R.G.H. Robertson et al., Phys. Rev. Lett. 32 (1974) 1207 1963: Beta-delayed protons 27Al(p,3n)25Si R. Barton et al., Can. J. Phys. 31 (1963) 2007 Fusion evaporation reactions M. Thoennessen, Rep. Prog. Phys. 67 (2004) 1187 Fusion-evaporation Phys. Rev. 80 (1950) 486 Phys. Rev. 81 (1951) 154 238U(12C,4n)246Cf 1970: Proton radioactivity 16O(40Ca,p2n)53Co 54Fe(p,2n)53Co K.P. Jackson et al., Phys. Lett. 33B (1970) 281 J. Cerny et al., Phys. Lett. 33B (1970) 284 Projectile fragmentation Fragments were detected in a zero-degree magnetic spectrometer and identified in a ΔE-E silicon detector telescope Phys. Rev. Lett. 42 (1979) 40 Projectile fragmentation at the proton dripline M. Langevin et al., Nucl. Phys. A455 (1986) 149 1982: Ground-state proton radioactivity 96Ru(58Ni,p2n)151Lu S. Hofmann et al., Z. Phys. A 305 (1982) 111 2002: Two-proton radioactivity 600 MeV/A 58Ni fragmentation 12 events 75 MeV/A 58Ni fragmentation M. Pfuetzner et al., Eur. Phys. J. A 14 (2002) 279 J. Giovinazzo et al., Phys. Rev. Lett. 89 (2002) 102501 Mapping the proton dripline: Z<13 I. Mukha et al., Phys. Rev. Lett. 99 (2007) 182501 V.Z. Goldberg et al., Phys. Lett. B692 (2010) 307 12<Z<31 40Ca(14N,15C)39Sc Mukha et al. EXON 2014 30Ar C.L. Woods et al., Nucl. Phys. A484 (1988) 145 30<Z<44 J.C. Batchelder et al., Phys. Rev C 48 (1993) 2593 A.M. Rogers et al., Phys. Rev. Lett. 106 (2011) 252503 59Ge H. Suzuki et al., Nucl. Instrum. Meth. B 317 (2013) 756 A.A. Ciemny et al., Phys. Rev. C 92 (2015) 014622 43<Z<52 96In 94Cd 92Ag Lubos et al. 90Pd PROCON2015 C.B. Hinke et al., Nature 486 (2012) 341 H. Suzuki et al., Nucl. Instrum. Meth. B 317 (2013) 756 K. Rykaczewski et al., Phys. Rev. C 52 (1995) 2310(R) 51<Z<84 Odd-Z: Still unknown isotopes between proton and β+ emitters Published only in a conference proceeding Even-Z: A few bound isotopes are still unknown Issue with conference proceedings NCSR Demokritos, Athens, Greece MSU A1200 fragment separator 83<Z<93 Presented at ARIS 2014 Potential 4p emitter 222U was discovered with the reaction 191 Rn 186W(40Ar,4n) so 220U should be accessible with 184W(40Ar,4n). R. Hingmann et al., Z. Phys. A 313 (1983) 141 Y. Wakabayashi et al., ARIS-2014, PS1-B037 (2014) L. Ma et al., Phys. Rev. C 91 (2015) 051302(R) H.M. Devaraja et al., Phys. Lett. B 748 (2015) 199 Four-proton radioactivity M. Thoennessen, Rep. Prog. Phys. 67 (2004) 1187 92<Z<103 233Bk 223Am 229Am 219Np H.M. Devaraja et al., Phys. Lett. B 748 (2015) 199 Z>102 Utyonkov et al. at EXON-2014 284Fl 280Ds En'yo et al. at EXON-2014 H.M. Devaraja et al., Phys. Lett. B 748 (2015) 199 At and beyond the proton dripline FRIB M. Thoennessen, Rep. Prog. Phys. 67 (2004) 1187 Summary and outlook About 1300 proton-rich isotopes have been discovered, most of them by spallation and fusion-evaporation reactions There are still hundreds of proton-rich isotopes left to be discovered Both, fusion evaporation and projectile fragmentation continue to be the dominant (only?) production mechanism Publish the results in the refereed literature!.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    44 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us