Chapters 1 – 4: Overview

Chapters 1 – 4: Overview

DPRG Chapters 1 – 4: Overview • Photogrammetry: introduction, applications, and tools • GNSS/INS-assisted photogrammetric and LiDAR mapping • LiDAR mapping: principles, applications, mathematical model, and error sources and their impact. • QA/QC of LiDAR mapping • This chapter will be focusing on an alternative approach for the representation of rotation in 3D space: quaternions – Definition – Properties – Rotation axis and rotation angle representation of a rotation in 3D space Laser Scanning 1 Ayman F. Habib DPRG Chapter 5 QUATERNIONS & ROTATION IN 3D SPACE Laser Scanning 2 Ayman F. Habib DPRG Overview • Quaternions: definition • Quaternion properties • Quaternions and rotation matrices • Quaternion-rotation matrices relationship • Spherical linear interpolation • Concluding remarks Laser Scanning 3 Ayman F. Habib DPRG Quaternions Real Part Imaginary Part i i2 j 2 k 2 ijk 1 i jk kj j j ki ik k k ij ji • The real part for a “Pure Quaternion” is zero. Laser Scanning 4 Ayman F. Habib DPRG Quaternion Multiplication ; ; • Using the rules in the previous slide, we can get the following definition for quaternion multiplication: .; Laser Scanning 5 Ayman F. Habib DPRG Quaternion Multiplication ; ; & simplify the quaternion multiplication to matrix multiplication – ortho-normal matrices. Laser Scanning 6 Ayman F. Habib DPRG Quaternion Multiplication • Unit quaternions: 1 • For unit quaternions: Laser Scanning 7 Ayman F. Habib DPRG Quaternion Properties • Quaternion conjugate: ; ∗ ; ∗ ∗ .; ∗ ; • For unit quaternions: ∗ ; Laser Scanning 8 Ayman F. Habib DPRG Quaternion Properties • Quaternion conjugate: ∗ ∗ ∗ ∗ ∗ ... . Laser Scanning 9 Ayman F. Habib DPRG Quaternions & Rotation Matrices • Given the following quaternions: ∗ • q is a unit quaternion. is a pure quaternion (real part is zero). 0; ∗ ∗ ; 0; .; ; Laser Scanning 10 Ayman F. Habib DPRG Quaternions & Rotation Matrices ∗ ; ; ∗ .; ∗ ; ∗ 1 • The product ∗ produces the same vector . Laser Scanning 11 Ayman F. Habib DPRG Quaternions & Rotation Matrices 0; is perpendicular to . ; 0; .; ; 0; 0; Laser Scanning 12 Ayman F. Habib DPRG Quaternions & Rotation Matrices ∗ 0; ; ∗ . .; ∗ 0; ∗ 0; 2 Laser Scanning 13 Ayman F. Habib DPRG Quaternions & Rotation Matrices ∗ 0; 2 ∗ ; 2 • From 1 & 2, one can conclude that: ∗ ∗ ; http://www.euclideanspace.com Laser Scanning 14 Ayman F. Habib DPRG Quaternions & Rotation Matrices Plane to the axis 2 ∗ &∗ are pure quaternions & ∗ are the imaginary components of & ∗. Laser Scanning 15 Ayman F. Habib DPRG Quaternions & Rotation Matrices ; ∗ ; Plane to the axis 2 ∗ &∗ are pure quaternions & ∗ are the imaginary components of & ∗. Laser Scanning 16 Ayman F. Habib DPRG Quaternions & Rotation Matrices • Any 3D rotation matrix can be represented by a rotation ( ) around a unit vector ( ). • This rotation can be defined by the following unit quaternion: cos sin sin sin 2 2 2 2 http://www.euclideanspace.com Laser Scanning 17 Ayman F. Habib DPRG Quaternions & Rotation Matrices • Rotation maintains the magnitude of a vector: ∗ . ∗ ̅∗ . ̅∗ ∗ ∗ ̅ ̅ . ∗∗ Laser Scanning 18 Ayman F. Habib DPRG Quaternions & Rotation Matrices • Rotation maintains the angular deviation between two vectors: ∗ ∗ . ̅∗ . ̅ ∗ ∗ ∗ ̅ ̅ . ∗∗ Laser Scanning 19 Ayman F. Habib DPRG Quaternions & Rotation Matrices • Rotation maintains the magnitude of a triple product: ,, . • Since: – Quaternion rotation maintains vector magnitude. – Quaternion rotation maintains angular deviation between two vectors. • Then: – Quaternion rotation maintains the magnitude of the triple product. ∗ ∗ ∗ ,, , , Laser Scanning 20 Ayman F. Habib DPRG Quaternions & Rotation Matrices • Quaternion/rotation matrix relationship: ∗ ∗ ̅∗ ̅∗ Laser Scanning 21 Ayman F. Habib DPRG Quaternions & Rotation Matrices • Quaternion/rotation matrix relationship: ̅∗ 10 00 0 ̅ ∗ 0 0 Laser Scanning 22 Ayman F. Habib DPRG Quaternions & Rotation Matrices Quaternion to Rotation Transformation 2 2 2 2 2 2 2 2 2 2 2 2 & define the same rotation matrix Laser Scanning 23 Ayman F. Habib DPRG Quaternions & Rotation Matrices Rotation to Quaternion Transformation (Option # 1) 3 4 1 / 4 / 4 / 4 / Assumption: 10 Laser Scanning 24 Ayman F. Habib DPRG Quaternions & Rotation Matrices Rotation to Quaternion Transformation (Option # 2) 3 4 1 / 4 / 4 / 4 / Assumption: 10 Laser Scanning 25 Ayman F. Habib DPRG Quaternions & Rotation Matrices Rotation to Quaternion Transformation (Option # 3) 3 4 1 1/4 / 4 / 4 / 4 Assumption: 10 / Laser Scanning 26 Ayman F. Habib DPRG Quaternions & Rotation Matrices Rotation to Quaternion Transformation (Option # 4) 3 4 4 1 4 1 / 4 / 4 / 4 / Assumption: 10 Laser Scanning 27 Ayman F. Habib DPRG Quaternions & Rotation Matrices Rotation to Quaternion Transformation • Among the options, choose the one that ensures the highest numerical stability. • Option # 1: is the largest among ( ). • Option # 2: is the largest among ( ). • Option # 3: is the largest among ( ). • Option # 4: is the largest among ( ). Laser Scanning 28 Ayman F. Habib DPRG Quaternions & Rotation Matrices • The product of two quaternions: ; ; .; ; cos ; • This product is equivalent to rotation angle ( ) around the axis . Laser Scanning 29 Ayman F. Habib DPRG Spherical Linear Interpolation • Problem Statement: Given the rotations represented by and , whose angular deviation is , we need to evaluate the interpolated quaternion rotation , whose angular deviations to and are and , respectively. • As per the figure above: Laser Scanning 30 Ayman F. Habib DPRG Spherical Linear Interpolation Laser Scanning 31 Ayman F. Habib DPRG Spherical Linear Interpolation Laser Scanning 32 Ayman F. Habib DPRG Spherical Linear Interpolation . 1 1 Laser Scanning 33 Ayman F. Habib DPRG Spherical Linear Interpolation • Spherical Linear Interpolation is useful for: – Interpolation of derived rotation matrices from integrated GNSS/INS attitude – This is the case when deriving the rotation matrices at much higher rate than that derived from GNSS/INS unit (LiDAR & Line Camera systems) – Modeling variation of the rotation matrices as time dependent values for Line Camera Systems Laser Scanning 34 Ayman F. Habib DPRG Quaternions & Rotation Matrices • Quaternions characteristics compared to rotation matrices: – It avoids the gimbal lock problem. • Happens whenever the secondary rotation is 90° • Two rotations take place around the same axis in space. – Quaternion multiplication requires fewer operations compared to multiplication of two rotation matrices. – Quaternion-based rotation requires more operations when compared to traditional rotation of vectors. – Quaternions has one constraint while rotation matrices has 6 orthogonality constraints. – Interpolation of quaternion rotations is much more straight forward than 3D rotation matrices. Laser Scanning 35 Ayman F. Habib DPRG Gimbal Lock http://en.wikipedia.org/wiki/Gimbal_lock • A set of three gimbals mounted together to allow three degrees of freedom: roll, pitch and yaw. • When two gimbals rotate around the same axis, the system loses one degree of freedom. Laser Scanning 36 Ayman F. Habib DPRG Gimbal Lock Z Y X 90° Laser Scanning 37 Ayman F. Habib DPRG Gimbal Lock Y X Z 90° Laser Scanning 38 Ayman F. Habib DPRG Gimbal Lock Y X Z 90° & . Laser Scanning 39 Ayman F. Habib DPRG Gimbal Lock Z X Y X Z Y 90°, 90°, 90° Laser Scanning 40 Ayman F. Habib DPRG Gimbal Lock Z Y X 180° Laser Scanning 41 Ayman F. Habib DPRG Gimbal Lock X Y Z 90° Laser Scanning 42 Ayman F. Habib DPRG Gimbal Lock X Z Y 0° Laser Scanning 43 Ayman F. Habib DPRG Gimbal Lock Z X Y X Z Y 90°, 90°, 90° & 180°, 90°, 0° ‼! Singularity in the derivation of the rotation angles Laser Scanning 44 Ayman F. Habib.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    44 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us