
Function and Global Distribution of Polyethylene Terephthalate (PET)-Degrading Bacteria and Enzymes in Marine and Terrestrial Metagenomes Dissertation for obtaining the degree of Doctor rerum naturalium (Dr. rer. nat.) at the Department of Biology Subdivision at the Faculty of Mathematics, Informatics and Natural Sciences of the Universität Hamburg submitted by Dominik Danso from Hamburg Hamburg 2018 Genehmigt vom Fachbereich Biologie der Universität Hamburg auf Antrag von Prof. Dr. W. Streit Weiterer Gutachter der Dissertation: Prof. Dr. Bodo Saake Tag der Disputation: 25.01.2019 Eidesstattliche Versicherung Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Declaration on oath I hereby declare, on oath, that I have written the present dissertation by my own and have not used any other than the acknowledged resources and aids. Hamburg, 08.02.2019 Dominik Danso Table of Contents I Table of Contents List of Figures ............................................................................................................................ I List of Tables ............................................................................................................................. II Abstract .................................................................................................................................... III 1 Introduction ........................................................................................................................ 1 1.1 Plastic as an environmental pollutant ............................................................................ 2 1.2 Degradation processes of plastic................................................................................... 2 1.2.1 Depletion of PET by enzymatic hydrolysis .............................................................. 3 1.2.2 Polyethylene terephthalate (PET) degrading α/β hydrolases .................................. 4 1.3 Metagenome screening for novel biocatalysts ............................................................... 6 1.4 Intention of this work ..................................................................................................... 7 2 Material and Methods ......................................................................................................... 9 2.1 Bacterial strains, plasmids and respective cultivation conditions ................................... 9 2.1.1 Bacterial strains ...................................................................................................... 9 2.1.2 Cultivating D. maricopensis, P. brachysporum and V. gazogenes .......................... 9 2.1.3 Cultivating E. coli strains ........................................................................................ 9 2.1.4 Enrichment of environmental samples containing PET degrading organisms ....... 10 2.2 Vectors, primers and Constructs used in this work ...................................................... 10 2.3 Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM) .. 11 2.4 Function based screening of metagenome libraries .................................................... 12 2.4.1 Preparation of indicator plates .............................................................................. 12 2.4.2 Subcloning of potential PET hydrolase ORF’s from fosmid clones ....................... 13 2.5 Sequence based screening of metagenome libraries and databases .......................... 14 2.5.1 Construction of a Hidden Markov model ............................................................... 15 2.6 PET hydrolase expression in E. coli ............................................................................ 15 2.6.1 Cloning of PET2, PET5, PET6 and PET12 in E.coli ............................................. 15 2.6.2 Expression and purification .................................................................................. 16 Table of Contents II 2.7 Characterization of PET2, PET5, PET6 and PET12 .................................................... 17 2.7.1 para-nitrophenol (pNP) ester assay ...................................................................... 17 2.7.2 High-performance liquid chromatography (HPLC) measurements ........................ 18 2.8 Bioinformatic software ................................................................................................. 19 3 Results .............................................................................................................................. 21 3.1 Enrichment of PET degrading organisms .................................................................... 21 3.2 Function based screening of metagenomic libraries with indicator-plates .................... 22 3.3 Sequence based screening via a self-constructed HMM ............................................. 23 3.3.1 Alignment of known PET hydrolase sequences and construction of the HMM ...... 23 3.3.2 Seeking and classification of potential PET hydrolases from databases ............... 24 3.3.3 Seeking PET hydrolases within metagenomic datasets ........................................ 24 3.4 Characterization of the potential PET hydrolases PET2, PET5, PET6 and PET12 ...... 28 3.4.1 Plate assay .......................................................................................................... 29 3.4.2 Substrate specificity, temperature optimum and temperature stability .................. 30 3.4.3 Optimum pH ......................................................................................................... 32 3.4.4 Effect of metal ions, inhibitors detergents and solvents ........................................ 33 3.4.5 HPLC measurement of PET degradation products ............................................... 37 3.5 in silico analysis of functional tested PET hydrolases from this work ........................... 38 4 Discussion ........................................................................................................................ 41 4.1 Enrichment of a PET adhering Comamonas sp. strain ................................................ 41 4.2 Function vs. sequence based screening of novel PET hydrolyzing enzymes from metagenomes and databases ................................................................................................ 42 4.2.1 Analysis of database-derived sequence data and unraveling the taxonomic diversity of PET hydrolases ................................................................................................ 44 4.2.2 Worldwide distribution of PET hydrolases within terrestrial and marine metagenomes .................................................................................................................... 45 4.3 Biochemical characterization of PET hydrolases found by sequence mining ............... 46 4.3.1 Cloning and expression of highly toxic PET hydrolases ........................................ 47 Table of Contents III 4.3.2 Functional analysis revealing highly promiscuous and stable hydrolases ............. 47 4.4 in silico analysis of the new PET hydrolase PET2 ....................................................... 49 5 Conclusions and outlook ................................................................................................. 50 6 Appendix ........................................................................................................................... 52 7 References ........................................................................................................................ 84 8 Acknowledgments ............................................................................................................ 95 List of Figures I List of Figures Figure 1: Polycondensation of terephthalic acid (TPA) and ethylene glycole (EG) ....................... 1 Figure 2: Schematic overview of the partial PET degradation by bacteria ................................... 4 Figure 3: The canonical structure of α/β‑hydrolases ................................................................... 5 Figure 4: Schematic workflow of this study .................................................................................. 8 Figure 5: General procedure of constructing/refining the HMM .................................................. 14 Figure 6: Overlaid HPLC chromatogram from isocratic separation of TPA and BHET ............... 19 Figure 7: Microscopic imaging of Comamonas sp. .................................................................... 21 Figure 8: DEP hydrolase from the fosmid AL103_F12 ............................................................... 22 Figure 9: HMM logos of PET hydrolysis relevant motifs ............................................................. 23 Figure 10: Combined phylogenetic assignment of metagenomic PET hydrolase hits ................ 25 Figure 11: Taxonomical distribution on phylum level of PET hydrolase hits from metagenome records ...................................................................................................................................... 27 Figure 12: Geographical distribution of all used metagenomic datasets containing significant PET hydrolase hits .................................................................................................................... 28 Figure 13: Western blot analysis of partially purified PET hydrolases found in this study ........... 29 Figure 14: Plate
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages109 Page
-
File Size-