Huey-Wen Lin* and Kostas Orginos Lattice QCD Numerical Parameters

Huey-Wen Lin* and Kostas Orginos Lattice QCD Numerical Parameters

Hyperon Physics from Mixed Action Huey-Wen Lin* and Kostas Orginos Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 *presenter Lattice QCD Axial Coupling Constants Vus from Hyperon Semi-leptonic Decays • First-principles calculation of nonpertur- • Important applications such as in hyperon scattering and non-leptonic decays • Vus can be obtained from the semileptonic decay (B1 ! B2lν) width via bative physics in QCD • Only existing predictions are from chiral perturbation theory and large-N calcula- ) c ∆m5 • Lattice QCD is a discrete version of con- tions [3]: Γ = G2 jV j2 (1 + δ ) F us 60π3 rad tinuum QCD theory 3 2 2 6 2 2 2 ∗ 2 2 • Use Monte Carlo integration to calculate physical observables directly from path integral 0:18 < −g < 0:36 × 1 − β jf j + jg j + β jf j + 2jg j + Re(f f ) + jf j + δ 2 ΞΞ 2 1 1 7 1 1 1 2 3 2 q Z 0:30 < gΣΣ < 0:55 1 i R d4x LQCD( ; ;A) h0jO( ; ; A)j0i = [dA][d ][d ] O( ; ; A)e with ∆m = m − m , β = ∆m=m , the radiative corrections δ , and δ 2(f ; g ) Z B1 B2 B1 rad q 1 1 • Poor fit into the formulation of SU(3) χPT[4] even with large-Nc constraints taking into account the transfer-momentum dependence of f and g [7] for quantity of interest 1 1 2 − 0 • Naive linear extrapolation against (mπ=fπ) . • In this work, only Σ ! n is analyzed. (Ξ ! Σ underway) • Take V ! 1 and a ! 0 to continuum limit We find gΣΣ = 0:441(14) and gΞΞ = −0:277(11). • Ademollo-Gatto (AG) theorem [8]: SU(3)-breaking corrections start at second order Gauge action SU(3) 2 f1(0) = f1(0) + O(λ ) • One-loop Symanzik O(a2)-improved action b • Dipole form fit to the q2 = 0 point at each pion ensemble Sg ReTr c0 1 - + c1 1 - + c2 1 - 3 • Construct a ratio f SU(3) − jf 0(0)j R(m ; m ) = ; K π a4(m2 − m2 )2 J Z ^ Z x ^ Z ^N K π m f coupling between walls and linearly extrapolate it to the physical Fermion action • Simultaneous SU(3) fit in the near future (8 parameters) [5] point 2 2 2 • Domain-wall fermion formulation Hyperon Form Factors R(mK; mπ) = c0 + c1a (mK + mπ): y x, s ? k • A proxy for studying the strangeness of the nucleon D 0 0 = δ 0D 0 + δ 0D 0 x;s;x ;s x;x s;s s;s x;x • Very weak constraint to the fit from the last point; hence, this is not an ideal solution H L 0 • Many experiments are devoted to understanding strange quark contributions to the Ls 2 Ls for our data. s elctromagnetic form factors of the nucleon: HAPPEX and G0 at JLab, SAMPLE at ? 1 D 0 = (1 − γ )δ 0 + (1 + γ )δ 0 − 2δ 0 s;s 2 5 s+1;s 5 s−1;s s;s MIT-BATES, and A4 at Mainz. mf − (1 − γ5)δs;L −1δ0;s0 + (1 + γ5)δs;0δL −1;s0 ; s 2 s s Strange Magnetic Moment GM 1 4 h i s k X y 0 • Quenched approximation in lattice QCD gives values of GM ranging from −0:28(10) to Dx;x0 = (1 − γµ)Uµ(x)δx+µ,x0 + (1 + γµ)Uµ(x )δx−µ,x0 + (M5 − 4)δx;x0 • Improvement: a single simultaneous fit (left) 2 µ=1 +0:05(6) 2 { Controllable chiral symmetry breaking with L 1 + M 2 − M 2 A + A M 2 + M 2 s • Adelaide-JLab Collaboration used an indirect approach with the help of charge symmetry 2 K π 1 2 K π f1(q ) = ) No complicated operator mixing and chiral perturbation theory to correct for quenching effects, obtaining −0:046(19) q2 2 1 − 2 2 M0+M1(M +M ) { Automatic O(a) off-shell improvement • Charge symmetry gives K π ) Easy to implement RI/MOM NPR • Our preliminary result: f1 = −0:88(15). s " N # ) No extra O(a) off-shell improvement on the action nor the operators s Rd p n u Ξ0 Σ− GM = s µ + 2µ − Ξ (µ − µ ) { Expensive in computational resources 1 − Rd u • (Improved) Staggered fermions (asqtad): no tree-level a2 effect uN { Relatively cheap for dynamical fermions (good) • uΞ : Linear ansatz chiral extrapolation to the physical pion mass (right) { Mixing among parities and tastes Conclusion and Outlook { Baryonic operators a nightmare | not suitable • Preliminary dynamical results for hyperon three-point data analysis • Mixed action: Match the sea Goldstone pion mass to the DWF pion { First lattice hyperon axial coupling constants: • (left) The pink band is the constraint for the g = 0:441(14) and g = −0:277(11) Numerical Parameters/Ensembles proton strangeness magnetic moment from ΣΣ ΞΞ • MILC 2+1-flavor staggered lattices [1] (lattice spacing a ≈ 0:125 fm with volume fixed our data, and the grey band indicates the { Stangeness in the proton: s s 2 s s at 2.6 fm) Rd given by Adelaide-JLab Collaboration GM = −0:066(12)stat(23)R , GE(Q = 0:1 GeV) = 0:022(61) • Mixed action: staggered sea (cheap) with DWF fermion (chiral symmetry) with Ls = 16, { First dynamical hyperon semileptonic decays: M5 = 1:7 [2] f1 = −0:88(15) • Ensemble parameters: s • More statistics needed since the pion mass is low Label mπ (MeV) mK (MeV) Σ conf. Ξ conf. Strange Electric Moment GE m010 358(2) 605(2) 600 600 • Similarly, charge symmetry connects us to a References m020 503(2) 653(2) 420 436 strange quantity through hr2iu: 1. C. W. Bernard et al., Phys. Rev. D 64, 054506 (2001). m030 599(1) 688(2) 561 561 s 2. D. B. Renner et al., Nucl. Phys. Proc. Suppl. 140, 255(2005); R. G. Edwards et al., PoS 2 s rd h 2 p 2 n 2 u i m040 689(2) 730(2) 306 319 hr i = s 2hr i + hr i − hr i ) : LAT2005, 056 (2005). 1 − rd • HYP (hypercubic)-smeared gauge and Gaussian-smeared fermion fields 3. M. J. Savage and J. Walden, Phys. Rev., D55:5376 (1997); R. Flores-Mendieta, et al., • Source-sink separation fixed at 10 • Chiral extrapolation for proton u- Phys. Rev., D58:094028 (1998). • Unitary sea quark mass only component charge radius shown on the 4. W. Detmold and C.-J. D. Lin, Phys. Rev. D71, 054510 (2006). • Interpolating field right 5. H-W. Lin and K. Orginos, in preparation. s 2 s ! ! • G (Q = 0:1 GeV) = 0:022(61), if taking r = 0:16(4) from χPT [6] ! X ip·x abc h T i E d 6. D. B. Leinweber, Phys. Rev. D53, 5115 (1996); D. B. Leinweber and A. W. Thomas, Jα p; t = e ua (y1; t)Cγ5db(y2; t) uc,α(y3; t)φ(y1 − x)φ(y2 − x)φ(y3 − x) !x;a;b;c Phys. Rev. D62, 074505 (2000); D. B. Leinweber et al., Phys. Rev. Lett. 94, 212001 (2005); D. B. Leinweber et al., Phys. Rev. Lett. 97, 022001 (2006). • Gs -Gs plane: • Two-point correlation function M E 7. A. Garcia et al., Lect. Notes Phys. 222, 1 (1985). Pink: experimental result ! X 1 + γ4 D ! ! E Purple: our preliminary result from mixed 8. M. Ademollo and R. Gatto, Phys. Rev. Lett. 13, 264 (1964). C2pt p; t = Jβ(p; t)J α(p; 0) α,β 2 αβ action 9. R. G. Edwards and B. Joo (SciDAC), Nucl. Phys. Proc. Suppl. 140, 832 (2005) Green: Adelaide-JLab Collaboration [6] us- • Three-point correlation function ing a quenched simulation but with quench- Acknowledgements ing corrections Γ;O ! X α,β D ! ! E This work was done on the clusters at Jefferson Laboratory using time awarded under C3pt p; t; τ = Γ Jβ(p; t)O(τ)J α(p; 0) α,β the SciDAC Initiative. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    1 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us