Climate Sensitivity: Uncertainties & Learning

Climate Sensitivity: Uncertainties & Learning

Climate Sensitivity: Uncertainties & Learning Workshop on GHG Stabilization Scenarios Tsukuba, Japan, 23 January 2004 Michael Schlesinger and Natasha Andronova Climate Research Group Department of Atmospheric Sciences University of Illinois at Urbana-Champaign Introduction • Climate sensitivity, ∆T2x: The change in global-average near-surface temperature resulting from a doubling of the preindustrial carbon dioxide concentration. • If ∆T2x is small, then the problem of human-induced climate change may not be acute. If ∆T2x is large, then human-induced climate change may be one of the most severe problems of the 21st century. Outline • Primer on Climate Sensitivity, ∆T2x • Estimates of Climate Sensitivity, ∆T2x • Uncertainty in ∆T2x due to uncertainty in the radiative forcing • Causes of temperature changes from 1856 to present • Learning ∆T2x over time dH ()t ΔT() t = − + F() t dt λ • F(t): Radiative Forcing – The change in the net downward radiative flux at some level in the atmosphere, usually the tropopause, caused by some “external” factor, such as changed solar insolation or GHGs. • Instantaneous Radiative Forcing – Radiative forcing before any temperature changes. • Adjusted Radiative Forcing – Radiative forcing after temperatures above the tropopause change, with tropospheric temperatures held constant. dH ()t ΔT() t = − + F() t dt λ • dH(t)/dt – The change in heat storage of the climate system; on earth, essentially the heat taken up or lost by the ocean. • λ – Climate Sensitivity • Equilibrium Climate Sensitivity , λeq – F(t) = constant and sufficient time elapsed for dH/dt = 0. ∆T = ∆Teq. – λ = λeq = ∆Teq/F ; e.g., λeq = ∆T2x/F2x. 2 F2x = 3.71 W/m . ∆T2x taken as a synonym for λeq. ∆T2x Simulated By The UIUC Stratosphere/Troposphere General Circulation Model 3.5 3.5 3 3 WO PCHEM 2.5 2.5 2 2 1.5 W PCHEM 1.5 1 1 0.5 y = m1*(1-exp(-0.5*M0/m1)) y = m1*(1-exp(-0.5*M0/m1)) 0.5 Value Error Value Error m1 2.2227 0.01223 m1 2.3625 0.011291 0 Chisq 14.79 NA Chisq 23.68 NA 0 R2 0.82407 NA R2 0.76598 NA -0.5 -0.5 2xCO2 – 1xCO2 surface air temperature (°C) 0 10 20 30 40 50 60 Time (years) Outline • Primer on Climate Sensitivity, ∆T2x • Estimates of Climate Sensitivity, ∆T2x • Uncertainty in ∆T2x due to uncertainty in the radiative forcing • Causes of temperature changes from 1856 to present • Learning ∆T2x over time 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 Cumulative distribution function 0.2 0.1 0 Arrhenius Range-0.1 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Climate sensitivity, ∆T2x (°C) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 Cumulative distribution function 0.2 0.1 0 EBM Arrhenius Range-0.1 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Climate sensitivity, ∆T2x (°C) 1 0.9 0.8 RCM 0.7 0.6 0.5 0.4 0.3 Cumulative distribution function 0.2 0.1 0 Range EBM Arrhenius -0.1 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Climate sensitivity, ∆T2x (°C) 1 0.9 0.8 RCM 0.7 GCM 0.6 0.5 0.4 0.3 Cumulative distribution function 0.2 0.1 0 EBM Arrhenius Range-0.1 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Climate sensitivity, ∆T2x (°C) 1 0.9 Paleo 0.8 RCM 0.7 0.6 GCM 0.5 0.4 0.3 Cumulative distribution function 0.2 0.1 0 Arrhenius Range-0.1 EBM -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Climate sensitivity, ∆T2x (°C) • U.S. National Research Council study chaired by Jule Charney wrote: "We estimate the most probable global warming for a doubling of CO2 to be near 3°C with a probable error of ±1.5°C". • The Intergovernmental Panel on Climate Change interpreted the findings of the Charney report to mean that 1.5°C ≤ ∆T2x ≤ 4.5°C. • We assert that this interpretation is incorrect and that the correct interpretation is that there is only a 50% likelihood that ∆T2x lies within 1.5° to 4.5°C. 1 0.9 Paleo 0.8 RCM 0.7 NRC 9779 0.6 0.5 0.4 0.3 Cumulative distribution function 0.2 GCM 0.1 0 Range Arrhenius -0.1 EBM -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Climate sensitivity, ∆T2x (°C) 1 0.9 Paleo 0.8 RCM 0.7 NRC 9779 0.6 0.5 0.4 0.3 Cumulative distribution function 0.2 GCM 0.1 0 IPCC Range Arrhenius -0.1 EBM -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Climate sensitivity, ∆T2x (°C) 1 0.9 0.8 0.7 "Expert" opinion NRC 7997 0.6 0.5 0.4 0.3 Cumulative distribution function 0.2 0.1 0 IPCC Range Arrhenius -0.1 EBM -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Climate sensitivity, ∆T2x (°C) 1 0.9 Expert Forest et al 0.8 Expert 0.7 Wigley & Raper Tol & de Vos 0.6 0.5 0.4 "Expert" 0.3 opinion Cumulative distribution function 0.2 0.1 0 IPCC NRC 97 Range 79 Arrhenius -0.1 EBM -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Climate sensitivity, ∆T2x (°C) 1 0.9 Andronova & Schlesinger 0.8 0.7 0.6 Uniform 0.5 Uniform ForestForest et et al al GregoryGregory et et al al 0.4 0.3 Cumulative distribution function 0.2 Knutti et al 0.1 Knutti et al 0 IPCC NRC 79 Arrhenius Range-0.1 EBM -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Climate sensitivity, ∆T2x (°C) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 Cumulative distribution function 0.2 0.1 0 IPCC Arrhenius Range-0.1 EBM -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Climate sensitivity, ∆T2x (°C) Arrhenius (1896) GCM Expert Gregory et al. Knutti et al. EBM Paleo Uniform Forrest et al. Andronova & Schlesinger Tol & de Vos RCM IPCC Expert Forrest et al. Expert Wigley & Raper NRC 79 Outline • Primer on Climate Sensitivity, ∆T2x • Estimates of Climate Sensitivity, ∆T2x • Uncertainty in ∆T2x due to uncertainty in the radiative forcing • Causes of temperature changes from 1856 to present • Learning ∆T2x over time Simple climate/ocean model λ ΔF ΔF oi Li λ Atmosphere k N Atmosphere β a . over Ocean over Land k S λ Na,o λ Sa,o λa , L βo Mixed Layer Interior Ocean Land Bottom Ocean σo , i σL , i λ ΔF ΔF oN oS λ NH Atmosphere βa SH Atmosphere over Ocean over Ocean λ Na,o λ Sa,o NH Mixed Layer SH Mixed Layer κ κ W βo W SH Polar Ocean NH Interior Ocean SH Interior Ocean κ κ W W NH Polar Ocean βo W κ κ W NH Bottom βo SH Bottom Ocean Ocean σo, N σo, S 2) Radiative Forcing 2.5 2 GHG Sulphate aerosol 1.5 Tropospheric ozone 1 Total anthropogenic Anthropogenic forcing0.5 (W/m 0 -0.5 -1 -1.5 (A) 1750 1800 1850 1900 1950 2000 2) 1 0 -1 -2 Volcanic forcing-3 (W/m -4 -5 -6 (B) 1750 1800 1850 1900 1950 2000 2) 1369 1368 1367 Solar irradiance 1366 (W/m 1365 1364 LN (C) HS 1363 1750 1800 1850 1900 1950 2000 Year 0.6 (A) (NH+SH)/2 C o 0.4 Obs 0.2 Air 0 -0.2 -0.4 Temperature Departure, -0.6 1850 1880 1910 1940 1970 2000 0.6 (B) (NH–SH) C o 0.4 Obs 0.2 0 emperature Changes Observed Surface T -0.2 Temperature Departure, -0.4 1850 1880 1910 1940 1970 2000 Simulated Vs. Observed Surface Air Temperature Change 0.6 0.6 (A) (NH+SH)/2 (B) (NH–SH) C C o 0.4 o 0.4 Obs Obs 0.2 0.2 0 0 -0.2 -0.2 -0.4 Sim(GTAS) Temperature Departure, Sim(GTAS) Temperature Departure, -0.6 -0.4 1850 1880 1910 1940 1970 2000 1850 1880 1910 1940 1970 2000 0.4 (C) (NH+SH)/2 0.3 (D) NH–SH C) 0.3 C) o o 0.2 0.2 0.1 0.1 0 0 -0.1 -0.1 -0.2 -0.2 Res = Obs – Sim(GTAS) Obs – sim temperature ( Obs – sim temperature ( -0.3 Res = Obs – Sim(GTAS) -0.3 -0.4 1850 1880 1910 1940 1970 2000 1850 1880 1910 1940 1970 2000 Schlesinger & Ramankutty (1994) 100 0.08 IPCC 92 (1858-1992) N = 135, M = 40 0.06 0.04 ∧ 10 X 0.02 1 0 ∧ X -0.02 2 / Total Variance x 100 (%) 1 k λ Mode Time Series (°C) -0.04 -0.06 A -0.08 C Eigenvalues 0 5 10 15 20 25 30 35 40 1850 1870 1890 1910 1930 1950 1970 1990 Mode Year 0.3 0.4 0.3 ∧ ∧ X + X 0.2 1 2 0.2 C) ρ o 1 0.1 0.1 0.0 0 -0.1 -0.1 ρ 2 -0.2 Eigenvectors (EOFs, -0.2 -0.3 IPCC Obs B Detrended Temperature Anomaly (°C) D -0.3 -0.4 0 5 10 15 20 25 30 35 40 1850 1870 1890 1910 1930 1950 1970 1990 i (years) Year Schlesinger & Ramankutty (1994) 180 120W 60W 0 60E 120E 180 90N 90N 60N 60N 1 5 2 3 5 30N 30N 4 0 8 10 0 7 6 11 30S 30S 9 9 60S 60S 90S 90S 180 120W 60W 0 60E 120E 180 ∆T2x Versus Radiative Forcing 5 4 3 (°C) 2x T IPCC Range ∆ 2 1 0 GT GTA GTAV1 GTAS GTASV1 GTASV2 Radiative forcing model Conclusion 1 • To reduce the uncertainty in climate sensitivity requires reducing the uncertainty in the radiative forcing, not only by aerosols, but also by the Sun and volcanoes.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    52 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us