Sympy Cheatsheet (

Sympy Cheatsheet (

SymPy Cheatsheet (http://sympy.org) Basics Geometry Examples Sympy help: help(function) Points: a = Point(xcoord, ycoord) Find 100 digits of πe: Declare symbol: x = Symbol('x') Lines: l = Line(pointA, pointB) (pi**E).n(100) Substitution: expr.subs(old, new) Circles: c = Circle(center, radius) Numerical evaluation: expr.evalf() Triangles: t = Triangle(a, b, c) Expand (x + y)2(x − y)(x2 + y): Expanding: expr.expand() Area: object.area ((x + y)**2 * (x - y) * (x**2 + y)).expand() Common denominator: ratsimp(expr) Intersection: intersection(a, b) 1 x sin x − 1 Simplify expression: simplify(expr) Checking tangency: c.is_tangent(l) Simplify + : x x2 − 1 simplify((1/x) + (x * sin(x) - 1)/(x**2 - 1)) Constants Numbers types Plotting Check if line passing through points (0; 1) and (1; 1) π: pi Integers (Z): Integer(x) Plot: Plot(f, [a, b]) is tangent to circle with center at (5; 5) and radius 3: e: E Rationals (Q): Rational(p, q) Zoom: +=−: R/F or PgUp/PgDn or Numpad +/- Circle(Point(5,5), 3).is_tangent( 1: oo Reals (R): Float(x) Rotate X,Y axis: Arrow Keys or WASD Line(Point(0,1), Point(1,1))) i: I Rotate Z axis: Q and E or Numpad 7 and 9 View XY: F1 Find roots of x4 − 4x3 + 2x2 − x = 0: View XZ: F2 Basic funtions solve(x**4 - 4*x**3 + 2*x**2 - x, x) View YZ: F3 Trigonometric: sin cos tan cot View Perspective: F4 Solve the equations system: x + y = 4, xy = 3: Cyclometric: asin acos atan acot Axes Visibility: F5 solve([x + y - 4, x*y - 3], [x, y]) Hyperbolic: sinh cosh tanh coth Axes Colors: F6 Area hyperbolic: asinh acosh atanh acoth Screenshot: F8 p Calculate limit of the sequence n n: Exponential: exp(x) Exit plot: ESC Square root: sqrt(x) limit(n**(1/n), n, oo) Logarithm (logb a): log(a, b) Discrete math jxj Natural logarithm: log(a) Calculate left-sided limit of the function x in 0: Gamma (Γ(x)): gamma(x) Factorial (n!): ( ) factorial(n) limit(abs(x)/x, x, 0, dir='-') Absolute value: abs(x) n BinomialP coefficient k : binomial(n, k) P b Calculate the sum 100 n2: Sum ( n=Qa expr): summation(expr, (n, a, b)) n=0 b summation(n**2, (n, 0, 100)) Calculus Product ( n=a expr): product(expr, (n, a, b)) P1 lim f(x): limit(f, x, a) Calculate the sum 1 : x!a Linear algebra n=0 n2 lim f(x): limit(f, x, a, dir='-') summation(1/n**2, (n, 0, oo)) x!a− Matrix definition: m = Matrix([[a, b], [c, d]]) R lim f(x): limit(f, x, a, dir='+') 3 x!a+ Determinant: m.det() Calculate the integral cos x dx: d integrate(cos(x)**3, x) dx f(x): diff(f, x) Inverse: m.inv() @ f(x; y): diff(f, x) × R@x Identity matrix n n: eye(n) R 1 × Calculate the integral dx : R f(x) dx : integrate(f, x) Zero matrix n n: zeros(n) 1 x2 b Ones matrix n × n: ones(n) integrate(1/x**2, (x, 1, oo)) a f(x) dx : integrate(f, (x, a, b)) Taylor series (at a, deg n) f.series(x, a, n) Find 10 terms of series expansion of 1 at 0: Printing 1−2x (1/(1 - 2*x)).series(x, 0, 10) Equations LAT X print: print latex() E 00 Equation f(x) = 0: solve(f, x) Python print: print python() Solve the differential equation f (x) + 9f(x) = 1: System of equations: solve([f, g], [x, y]) Pretty print: pprint() dsolve(f(x).diff(x, x) + 9*f(x) - 1, f(x)) Differential equation: dsolve(equation, f(x)) 1.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    1 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us