Math 241: Multivariable Calculus, Lecture 32 Parametric Surfaces and Integration on Surfaces, Section 16.6-16.7

Math 241: Multivariable Calculus, Lecture 32 Parametric Surfaces and Integration on Surfaces, Section 16.6-16.7

Math 241: Multivariable calculus, Lecture 32 Parametric Surfaces and Integration on Surfaces, Section 16.6-16.7 go.illinois.edu/math241fa17 Monday, November 27th, 2017 go.illinois.edu/math241fa17. • Point: need parametrization of the curve. • Define the integral of vector field F over C: Z Z b F · dr = F(r(t)) · r0(t) dt: C a • Main theorem: Green says: Integral over the boundary is related to double integral over the interior: Z ZZ F · dr = Qx − Py dA @D D Review Line Integrals. • Define the integral of function f over C Z Z b f ds = f (r(t)) kr0(t)k dt: C a go.illinois.edu/math241fa17. • Define the integral of vector field F over C: Z Z b F · dr = F(r(t)) · r0(t) dt: C a • Main theorem: Green says: Integral over the boundary is related to double integral over the interior: Z ZZ F · dr = Qx − Py dA @D D Review Line Integrals. • Define the integral of function f over C Z Z b f ds = f (r(t)) kr0(t)k dt: C a • Point: need parametrization of the curve. go.illinois.edu/math241fa17. • Main theorem: Green says: Integral over the boundary is related to double integral over the interior: Z ZZ F · dr = Qx − Py dA @D D Review Line Integrals. • Define the integral of function f over C Z Z b f ds = f (r(t)) kr0(t)k dt: C a • Point: need parametrization of the curve. • Define the integral of vector field F over C: Z Z b F · dr = F(r(t)) · r0(t) dt: C a go.illinois.edu/math241fa17. Review Line Integrals. • Define the integral of function f over C Z Z b f ds = f (r(t)) kr0(t)k dt: C a • Point: need parametrization of the curve. • Define the integral of vector field F over C: Z Z b F · dr = F(r(t)) · r0(t) dt: C a • Main theorem: Green says: Integral over the boundary is related to double integral over the interior: Z ZZ F · dr = Qx − Py dA @D D go.illinois.edu/math241fa17. • Parameterized Curve =) Parameterized surface • Integral over Curve =) Integral over Surface • Green's Thm =) ???? Goal Goal: Generalize to next higher dimension: • Curve =) Surface go.illinois.edu/math241fa17. • Integral over Curve =) Integral over Surface • Green's Thm =) ???? Goal Goal: Generalize to next higher dimension: • Curve =) Surface • Parameterized Curve =) Parameterized surface go.illinois.edu/math241fa17. • Green's Thm =) ???? Goal Goal: Generalize to next higher dimension: • Curve =) Surface • Parameterized Curve =) Parameterized surface • Integral over Curve =) Integral over Surface go.illinois.edu/math241fa17. Goal Goal: Generalize to next higher dimension: • Curve =) Surface • Parameterized Curve =) Parameterized surface • Integral over Curve =) Integral over Surface • Green's Thm =) ???? go.illinois.edu/math241fa17. Parametric surfaces 2 A parametric surface S ⊂ R is described by an injective map (the parameterization): 3 r : D ! R ; (u; v) 7! (x(u; v); y(u; v); z(u; v)) where x(u; v), y(u; v) and z(u; v) are differentiable functions and 2 D ⊂ R is a domain. z (x(u, v),y(u, v),z(u, v)) ~r v D S (u, v) u x y go.illinois.edu/math241fa17. • the portion of the plane x + y + z = 1 in the first octant; • the cone z2 + y 2 = x2, x ≥ 0; • the hemisphere x2 + y 2 + z2 = 3, y ≥ 0; 3 • the parallelogram in R with vertices (0; 0; 0), (1; 1; 0), (1; 1; 2) and (2; 2; 2) Examples of parametric surfaces Find a parameterization for the following surfaces: . go.illinois.edu/math241fa17. • the cone z2 + y 2 = x2, x ≥ 0; • the hemisphere x2 + y 2 + z2 = 3, y ≥ 0; 3 • the parallelogram in R with vertices (0; 0; 0), (1; 1; 0), (1; 1; 2) and (2; 2; 2) Examples of parametric surfaces Find a parameterization for the following surfaces: • the portion of the plane x + y + z = 1 in the first octant; . go.illinois.edu/math241fa17. • the hemisphere x2 + y 2 + z2 = 3, y ≥ 0; 3 • the parallelogram in R with vertices (0; 0; 0), (1; 1; 0), (1; 1; 2) and (2; 2; 2) Examples of parametric surfaces Find a parameterization for the following surfaces: • the portion of the plane x + y + z = 1 in the first octant; • the cone z2 + y 2 = x2, x ≥ 0; . go.illinois.edu/math241fa17. 3 • the parallelogram in R with vertices (0; 0; 0), (1; 1; 0), (1; 1; 2) and (2; 2; 2) Examples of parametric surfaces Find a parameterization for the following surfaces: • the portion of the plane x + y + z = 1 in the first octant; • the cone z2 + y 2 = x2, x ≥ 0; • the hemisphere x2 + y 2 + z2 = 3, y ≥ 0; . go.illinois.edu/math241fa17. Examples of parametric surfaces Find a parameterization for the following surfaces: • the portion of the plane x + y + z = 1 in the first octant; • the cone z2 + y 2 = x2, x ≥ 0; • the hemisphere x2 + y 2 + z2 = 3, y ≥ 0; 3 • the parallelogram in R with vertices (0; 0; 0), (1; 1; 0), (1; 1; 2) and (2; 2; 2). go.illinois.edu/math241fa17. • x is positive, so x = pz2 + y 2. Use polar coordinates in the z; y-plane: r(ρ, θ) = (ρ, ρ cos(θ); ρ sin(θ)). No restriction of the parameters. p • y is positive so we can write y = 3 − x2 − z2. Use polar coordinates in x; z plane: p p r(ρ, θ) = (ρ cos(θ); 3 − ρ2; ρ sin(θ)). 0 ≤ ρ ≤ 3, 0 ≤ θ ≤ 2π • Use s; t as coordinates in the direction of the sides: r(s; t) = s(1; 1; 0) + t(1; 1; 2) = (s + t; s + t; 2t), with 0 ≤ s; t ≤ 1 Solutions • z = 1 − x − y, so use x; y as parameters. So r(u; v) = (u; v; 1 − u − v), for 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 − u. go.illinois.edu/math241fa17. p • y is positive so we can write y = 3 − x2 − z2. Use polar coordinates in x; z plane: p p r(ρ, θ) = (ρ cos(θ); 3 − ρ2; ρ sin(θ)). 0 ≤ ρ ≤ 3, 0 ≤ θ ≤ 2π • Use s; t as coordinates in the direction of the sides: r(s; t) = s(1; 1; 0) + t(1; 1; 2) = (s + t; s + t; 2t), with 0 ≤ s; t ≤ 1 Solutions • z = 1 − x − y, so use x; y as parameters. So r(u; v) = (u; v; 1 − u − v), for 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 − u. • x is positive, so x = pz2 + y 2. Use polar coordinates in the z; y-plane: r(ρ, θ) = (ρ, ρ cos(θ); ρ sin(θ)). No restriction of the parameters. go.illinois.edu/math241fa17. • Use s; t as coordinates in the direction of the sides: r(s; t) = s(1; 1; 0) + t(1; 1; 2) = (s + t; s + t; 2t), with 0 ≤ s; t ≤ 1 Solutions • z = 1 − x − y, so use x; y as parameters. So r(u; v) = (u; v; 1 − u − v), for 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 − u. • x is positive, so x = pz2 + y 2. Use polar coordinates in the z; y-plane: r(ρ, θ) = (ρ, ρ cos(θ); ρ sin(θ)). No restriction of the parameters. p • y is positive so we can write y = 3 − x2 − z2. Use polar coordinates in x; z plane: p p r(ρ, θ) = (ρ cos(θ); 3 − ρ2; ρ sin(θ)). 0 ≤ ρ ≤ 3, 0 ≤ θ ≤ 2π go.illinois.edu/math241fa17. Solutions • z = 1 − x − y, so use x; y as parameters. So r(u; v) = (u; v; 1 − u − v), for 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 − u. • x is positive, so x = pz2 + y 2. Use polar coordinates in the z; y-plane: r(ρ, θ) = (ρ, ρ cos(θ); ρ sin(θ)). No restriction of the parameters. p • y is positive so we can write y = 3 − x2 − z2. Use polar coordinates in x; z plane: p p r(ρ, θ) = (ρ cos(θ); 3 − ρ2; ρ sin(θ)). 0 ≤ ρ ≤ 3, 0 ≤ θ ≤ 2π • Use s; t as coordinates in the direction of the sides: r(s; t) = s(1; 1; 0) + t(1; 1; 2) = (s + t; s + t; 2t), with 0 ≤ s; t ≤ 1 go.illinois.edu/math241fa17. Tangent plane and normal to a surface 3 For a parameterized surface r : D ! R , the tangent plane at r(u; v) is spanned by the tangent vectors: ru = hxu; yu; zui; rv = hxv ; yv ; zv i; and a normal vector at r(u; v) is given by: n = ru × rv : z ~n ~r ~rv ~ru v D (u, v) S u x y go.illinois.edu/math241fa17. In particular, the area of S is defined by: Area(S) = x 1 dS = x jru × rv j dA: S D Motivation: Recall the change of variables formula! Surface integrals 3 3 Given a surface S ⊂ R with parameterization r : D ! R and a function f : S ! R, the surface integral of f over S is: x f (x; y; z) dS = x f (r(u; v))jru × rv j dA: S D go.illinois.edu/math241fa17. Motivation: Recall the change of variables formula! Surface integrals 3 3 Given a surface S ⊂ R with parameterization r : D ! R and a function f : S ! R, the surface integral of f over S is: x f (x; y; z) dS = x f (r(u; v))jru × rv j dA: S D In particular, the area of S is defined by: Area(S) = x 1 dS = x jru × rv j dA: S D go.illinois.edu/math241fa17.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    28 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us