D. Fundamentals of Cell Movement

D. Fundamentals of Cell Movement

___________________________________ D. Fundamentals of Cell Movement What cell types move? ___________________________________ • Prokaryotes must find food, evade toxins • Free‐living ciliar and flagellar eukaryotes ___________________________________ • Plants don’t have motile cells but can demonstrate both rapid and slow movements due to cell activity • Animals have both ciliar and flagellar cells ___________________________________ • We also have cells that crawl, rather than swim Many cells during development and growth White blood cells responding to infection Wound healing cells ___________________________________ • Muscular movements in animals result from individual cell movements ___________________________________ ___________________________________ ___________________________________ What strategies do cells employ to move? ___________________________________ • Swimming through liquids: oars and propellers • Crawling on solid surfaces: grab‐pull‐release ___________________________________ • Selectively contracting some cells but not others: some use motor proteins, others water volume ___________________________________ • Even ‐ growing more cells, or letting some die, to move the entire structure closer or farther away! ___________________________________ ___________________________________ ___________________________________ ___________________________________ Many prokaryotic cells have a structure composed of a membrane‐bound motor complex driving propeller‐ ___________________________________ like movement of the extracellular flagellum ___________________________________ ___________________________________ The flagellum is composed ___________________________________ of the helical protein flagellin ___________________________________ Figure 1-18a Molecular Biology of the Cell, Fifth Edition (© Garland Science 2008) ___________________________________ The helical structure of flagellin allows for two kinds of ___________________________________ movement: coordinated linear vs. stationary ‘tumbling’ ___________________________________ RECEPTOR CHEMOTAXIS senses correct direction: will swim in a straight line for a ___________________________________ longer time before tumbling senses wrong direction: will tumble sooner and try a new direction at random. ___________________________________ finds the location with the highest concentration of an attractant (lowest of repellent ) ___________________________________ Even at high concentrations, can distinguish very small differences in concentration. ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Two levels of regulation: 1. Signal transductio to motor ___________________________________ 2. Control of receptor activation ___________________________________ ___________________________________ ___________________________________ ___________________________________ Figure 15-73 Molecular Biology of the Cell (© Garland Science 2008) ___________________________________ ___________________________________ Ciliar and Flagellar Eukaryotes ___________________________________ • The Basic Mechanism – Complex microtubular structures extend out from ___________________________________ the cell body under the plasma membrane – They extend out from basal bodies rather than centrisomes ___________________________________ – Immobilized dynein pulls retrograde and bends the microtubule ___________________________________ – Relaxation or a counter pull creates waving ___________________________________ ___________________________________ Free‐living eukaryote Didiniumhas two fringes of cilium used for swimming ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Here it is phagocytosing another eukaryotic cell as prey ___________________________________ Figure 1-32 Molecular Biology of the Cell, Fifth Edition (© Garland Science 2008) ___________________________________ Airway Epithelium ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ‐ G.I. epithelium ‐ Fallopian tubes ‐ Epidydimus ___________________________________ ___________________________________ ___________________________________ Flagellar Animal Cells ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ The structure of microtubules in both cilia and flagella are the classic 9+2: ___________________________________ An external ring of 9 doublets around 2 full microtubules ___________________________________ ___________________________________ ___________________________________ Figure 16-81a Molecular Biology of the Cell (© Garland Science 2008) ___________________________________ ___________________________________ ___________________________________ ___________________________________ Basal body structure is a ring of nine (9) triplets ___________________________________ Microtubules are nucleated from γ‐tubulin ___________________________________ and are capped and stabilized long‐term. Same as the centriole ___________________________________ Figure 16-84a Molecular Biology of the Cell (© Garland Science 2008) ___________________________________ ___________________________________ They work as a unit by being held together with ‘radial spoke’ and ‘nexin’ proteins. As dyneins attached to one doublet attempt to walk on the adjacent one they all bend. ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Figure 16-81b Molecular Biology of the Cell (© Garland Science 2008) ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Figure 16-83b Molecular Biology of the Cell (© Garland Science 2008) ___________________________________ ___________________________________ Mechanisms of Waving ___________________________________ • In long flagellum, sequential peristaltic contractions cause a whip‐ ___________________________________ like back and forth motion ___________________________________ • In short cilia, alternating side‐to‐side contractions or simple relaxations ___________________________________ cause waving ___________________________________ ___________________________________ Cell Migration or “Crawling” ___________________________________ • The Basic Mechanism ___________________________________ – Triggered by signals from outside the cell – Actin‐myosin based movement – Requires attachments to outside to pull against ___________________________________ – Gotta’ drag all of the cell contents along for the ride ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ In embryo development and ___________________________________ wound healing, epithelial cells can migrate as sheets. In general, these types of migrations are combinations ___________________________________ of cell division and directed migration. ___________________________________ ___________________________________ ___________________________________ Figure 16-20 Molecular Biology of the Cell (© Garland Science 2008) ___________________________________ ___________________________________ Chemotaxis ___________________________________ Circumferential receptors ___________________________________ Rho‐family GTPases (monomeric) Rho‐dependent kinases ___________________________________ 1. Actin monomer nucleotide exchange 2. Actin fiber polymerization and disassembly ___________________________________ 3. Myosin motor ATPase activity ___________________________________ ___________________________________ Cell type‐specific migration receptor ___________________________________ Rho family monomeric GTPase Rho‐dependent kinase ___________________________________ ___________________________________ Cell capable of migration ___________________________________ ___________________________________ Circumferential distribution of migration‐inducing signaling cascades ___________________________________ ___________________________________ Source of signal ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Leading edge extension is driven by actin polymerization. Cell membrane is physically pushed forward by actin 1. Core of all structures is very dense actin network ___________________________________ 2. Completely exclude membrane enclosed organelles. Leading edge contains everything needed

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    35 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us