The Benefits of Sequent Calculus

The Benefits of Sequent Calculus

Introduction Sequent calculus Benefits The benefits of sequent calculus Etienne´ Miquey Equipe´ Gallinee, INRIA LS2N, Universite´ de Nantes Logic Mentoring Workshop 22/06/2019 1/ 22 Introduction Sequent calculus Benefits Forewords This talk is about: sequent calculus / Curry-Howard / operational semantics But also : proofs, programs, type systems, safe computation/compilation, … A fairy tale Sequent calculus provides wonderful tools! Gives principled answers to problems such as: how to soundly compile ×××? how to prove normalization of ×××? how should control operators and ××× interact? deciding the equivalence of normal forms 2/ 22 Introduction Sequent calculus Benefits Forewords This talk is about: sequent calculus / Curry-Howard / operational semantics But also : proofs, programs, type systems, safe computation/compilation, … A fairy tale Sequent calculus provides wonderful tools! Gives principled answers to problems such as: how to soundly compile ×××? how to prove normalization of ×××? how should control operators and ××× interact? deciding the equivalence of normal forms 2/ 22 Introduction Sequent calculus Benefits Forewords This talk is about: sequent calculus / Curry-Howard / operational semantics But also : proofs, programs, type systems, safe computation/compilation, … A fairy tale Sequent calculus provides wonderful tools! Gives principled answers to problems such as: how to soundly compile ×××? how to prove normalization of ×××? how should control operators and ××× interact? deciding the equivalence of normal forms 2/ 22 Introduction Sequent calculus Benefits Proofs A bit of history, fast-tracked 3/ 22 Introduction Sequent calculus Benefits Once upon a time… -300 Euclide Euclide’s Elements 4/ 22 Introduction Sequent calculus Benefits Once upon a time… -300 2019 Euclide 4/ 22 Introduction Sequent calculus Benefits Once upon a time… -300 1666 2019 Euclide Leibniz A crazy dream: “when there are disputes among persons, we can simply say: Let us calculate, without further ado, to see who is right.” Leibniz’s calculus ratiocinator 4/ 22 Introduction Sequent calculus Benefits Once upon a time… -300 1666 1879 2019 Euclide Leibniz Frege Frege’s Begrisschri: a ! F C¹aº f formal notations F¹aº quantifications / b F¹bº 8 9 c d distinction: c = d x vs 0x 0 F¹dº signified signifier F¹cº A¹c; dº 4/ 22 Introduction Sequent calculus Benefits Once upon a time… -300 1666 1879 1928 2019 a ! F C¹aº f F¹aº b F¹bº c d c = d F¹dº F¹cº Euclide Leibniz FregeA¹c; dº Hilbert Entscheidungsproblem (with Acker- mann): To decide if a formula of first-order logic is a tautology. # “to decide” is meant by means of a procedure Hilbert 4/ 22 Introduction Sequent calculus Benefits Once upon a time… -300 1666 1879 1928 1936 2019 a ! F C¹aº f F¹aº b F¹bº c d c = d F¹dº F¹cº Euclide Leibniz FregeA¹c; dº Hilbert Church λ-calculus - first (negative) answer to the Entscheidungsproblem ! Church 4/ 22 Introduction Sequent calculus Benefits A somewhat obvious observation Deduction rules Typing rules A 2 Γ ¹x : Aº 2 Γ ¹Axº ¹Axº Γ ` A Γ ` x : A Γ; A ` B Γ; x : A ` t : B ¹! º ¹! º Γ ` A ) B I Γ ` λx:t : A ! B I ` ) ` ` ! ` Γ A B Γ A ¹! º Γ t : A B Γ u : A ¹! º Γ ` B E Γ ` t u : B E 5/ 22 Introduction Sequent calculus Benefits Sequent, you said? Sequent: Hypotheses A1;:::; An ` B Conclusion Remark: »A¼ . Γ; A ` B . ¹)I º is almost . Γ ` A ) B B ¹) º A ) B I “a` la Gentzen”“a` la Prawitz” … a.k.a. natural deduction 6/ 22 Introduction Sequent calculus Benefits Sequent, you said? Sequent: Hypotheses A1;:::; An ` B Conclusion Remark: »A¼ . Γ; A ` B . ¹)I º is almost . Γ ` A ) B B ¹) º A ) B I “a` la Gentzen”“a` la Prawitz” … a.k.a. natural deduction 6/ 22 Introduction Sequent calculus Benefits Gentzen’s sequent calculus (1934) Sequent: Hypotheses A1;:::; An ` B1;:::; Bp Conclusions Identity rules connect hypotheses/conclusions Γ ` A; ∆ Γ; A ` ∆ ¹Cutº ¹Axº Γ ` ∆ A ` A Structural rules weaken, contract, permute Γ ` ∆ Γ ` A; A; ∆ Γ ` σ¹∆º ¹w º ¹c º ¹σ º … Γ ` A; ∆ r Γ ` A; ∆ r Γ ` ∆ r Logical rules le/right introduction of connectives Γ; A ` B; ∆ Γ ` A; ∆ Γ; B ` ∆ Γ ` A; ∆ Γ ` B; ∆ ¹) º ¹) º ¹^ º Γ ` A ) B; ∆ r Γ; A ) B ` ∆ l Γ ` A ^ B; ∆ r 7/ 22 Introduction Sequent calculus Benefits Gentzen’s sequent calculus (1934) Sequent: Hypotheses A1;:::; An ` B1;:::; Bp Conclusions Identity rules connect hypotheses/conclusions Γ ` A; ∆ Γ; A ` ∆ ¹Cutº ¹Axº Γ ` ∆ A ` A Structural rules weaken, contract, permute Γ ` ∆ Γ ` A; A; ∆ Γ ` σ¹∆º ¹w º ¹c º ¹σ º … Γ ` A; ∆ r Γ ` A; ∆ r Γ ` ∆ r Logical rules le/right introduction of connectives Γ; A ` B; ∆ Γ ` A; ∆ Γ; B ` ∆ Γ ` A; ∆ Γ ` B; ∆ ¹) º ¹) º ¹^ º Γ ` A ) B; ∆ r Γ; A ) B ` ∆ l Γ ` A ^ B; ∆ r 7/ 22 Introduction Sequent calculus Benefits Gentzen’s sequent calculus (1934) Sequent: Hypotheses A1;:::; An ` B1;:::; Bp Conclusions Proof-theoretic properties: cut elimination last rule subformula classical logic built-in … 7/ 22 Introduction Sequent calculus Benefits Gentzen’s sequent calculus (1934) Sequent: Hypotheses A1;:::; An ` B1;:::; Bp Conclusions Identity rules connect hypotheses/conclusions Γ ` A; ∆ Γ; A ` ∆ ¹Cutº ¹Axº Γ ` ∆ A ` A Structural rules Symmetry weaken, contract, permute Γ ` ∆ Γ ` A; A; ∆ Γ ` σ¹∆º ¹w º ¹c º ¹σ º … Γ ` A; ∆ r Γ ` A; ∆ r Γ ` ∆ r Logical rules le/right introduction of connectives Γ; A ` B; ∆ Γ ` A; ∆ Γ; B ` ∆ Γ ` A; ∆ Γ ` B; ∆ ¹) º ¹) º ¹^ º Γ ` A ) B; ∆ r Γ; A ) B ` ∆ l Γ ` A ^ B; ∆ r 7/ 22 Introduction Sequent calculus Benefits What about the computational content? 8/ 22 Introduction Sequent calculus Benefits Curien-Herbelin’s duality of computation Griin (1990): classical logic control operator Starting observation: Computational duality: ·? Terms Contexts ·? Sequent calculus abstract machine-like calculus 9/ 22 Introduction Sequent calculus Benefits Curien-Herbelin’s duality of computation Griin (1990): classical logic control operator Starting observation: Computational duality: ·? Terms Contexts ·? Sequent calculus abstract machine-like calculus 9/ 22 Introduction Sequent calculus Benefits Curien-Herbelin’s duality of computation Griin (1990): classical logic control operator Starting observation: Computational duality: ·? Terms Contexts ·? Sequent calculus abstract machine-like calculus 9/ 22 Introduction Sequent calculus Benefits Abstract machine Reduction h jj i h jj · i t u e Babs t u e h jj · i h » / ¼ jj i λx: t u e Babs t u x e Syntax c ::= ht jj ei commands terms t;u ::= e; f ::= contexts variable j x;y; z j ? empty application j t u j t · e application stack λ-abstraction j λx: t 10/ 22 Introduction Sequent calculus Benefits Introducing µ h jj i h jj · i t u e Babs t u e This reduction defines ¹t uº: It is the term that, when put against j ei, reduces to ht jju · ei. Idea: introduce a more primitive syntax hµα: c jj ei Bµ c »e/α¼ t u , µα: ht jj u · αi (actually the intuitionistic version µ?:c is enough) 11/ 22 Introduction Sequent calculus Benefits Introducing µ h jj i h jj · i t u e Babs t u e This reduction defines ¹t uº: It is the term that, when put against j ei, reduces to ht jju · ei. Idea: introduce a more primitive syntax hµα: c jj ei Bµ c »e/α¼ t u , µα: ht jj u · αi (actually the intuitionistic version µ?:c is enough) 11/ 22 Introduction Sequent calculus Benefits Introducing µ˜ A regular syntax? c ::= ht jj ei t;u ::= e; f ::= j x;y j α; β j λx:t j t · e j µα: c j ? h¹ Reminder:º jj i λx:t u e Babs Same idea, in the dual situation: 12/ 22 h jj i h jj i00 let x = t in u e Babs t “let x = in u e / ht jj µ˜x:ci Bµ˜ c »t x¼ Introduction Sequent calculus Benefits Introducing µ˜ A regular syntax? c ::= ht jj ei t;u ::= e; f ::= j x;y j α; β j λx:t j t · e j µα: c j ? Same idea, in the dual situation: h¹ º jj i h jj i h jj i00 λx:t u e Babs let x = t in u e Babs t “let x = in u e / ht jj µ˜x:ci Bµ˜ c »t x¼ 12/ 22 Introduction Sequent calculus Benefits Introducing µ˜ A regular syntax c ::= ht jj ei t;u ::= e; f ::= j x;y j α; β j λx:t j t · e j µα: c j µ˜x: c Same idea, in the dual situation: h¹ º jj i h jj i h jj i00 λx:t u e Babslet x = t in u e Babs t “let x = in u e | {z } µ˜x:hu jj ei / ht jj µ˜x:ci Bµ˜ c »t x¼ 12/ 22 Introduction Sequent calculus Benefits Curien-Herbelin’s λµµ˜-calculus Syntax: t;u ::= c ::= ht jj ei e; f ::= j x;y j α; β j λx:t j t · e j µα: c j µ˜x: c Reduction: hλx:t jj u · ei ! u µ˜x:ht jj ei ht jj µ˜x:ci ! c»t/x¼ hµα:c jj ei ! c»e/α¼ 13/ 22 Introduction Sequent calculus Benefits Curien-Herbelin’s λµµ˜-calculus Syntax: t;u ::= c ::= ht jj ei e; f ::= j x;y j α; β j λx:t j t · e j µα: c j µ˜x: c Reduction: hλx:t jj u · ei ! u µ˜x:ht jj ei ht jj µ˜x:ci ! c»t/x¼ hµα:c jj ei ! c»e/α¼ Critical pair: hµα:c jj µ˜x:c 0i .& c»µ˜x:c 0/α¼ c 0»µα:c/x¼ 13/ 22 Introduction Sequent calculus Benefits Curien-Herbelin’s λµµ˜-calculus Syntax: t;u ::= c ::= ht jj ei e; f ::= n j x;y j α; β o Values Co-values j λx:t j t · e j µα: c j µ˜x: c Reduction: hλx:t jj u · ei ! u µ˜x:ht jj ei ht jj µ˜x:ci ! c»t/x¼ t 2 V hµα:c jj ei ! c»e/α¼ e 2 E Critical pair: h jj 0i CbV µα:c µ˜x:c CbN .& c»µ˜x:c 0/α¼ c 0»µα:c/x¼ 13/ 22 Introduction Sequent calculus Benefits Curien-Herbelin’s λµµ˜-calculus Syntax: t;u ::= c ::= ht jj ei e; f ::= n j x;y j α; β o Values Co-values j λx:t j t · e j µα: c j µ˜x: c Reduction: hλx:t jj u · ei ! u µ˜x:ht jj ei ht jj µ˜x:ci ! c»t/x¼ t 2 V hµα:c jj ei ! c»e/α¼ e 2 E Critical pair: h jj 0i CbV µα:c µ˜x:c CbN .& c»µ˜x:c 0/α¼ Duality c 0»µα:c/x¼ (again and again) 13/ 22 Introduction Sequent calculus Benefits Curien-Herbelin’s λµµ˜-calculus Syntax: t;u ::= c ::= ht jj ei e; f ::= n j x;y j α; β o Values Co-values j λx:t j t · e j µα: c j µ˜x: c Typing rules:

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    61 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us