The Social Physics Collective Matjaž Perc 1,2,3 Editorial More Than Two Centuries Ago Henri De Saint-Simon Envisaged Physical Laws to Describe Human Societies

The Social Physics Collective Matjaž Perc 1,2,3 Editorial More Than Two Centuries Ago Henri De Saint-Simon Envisaged Physical Laws to Describe Human Societies

www.nature.com/scientificreports OPEN The social physics collective Matjaž Perc 1,2,3 EDITORIAL More than two centuries ago Henri de Saint-Simon envisaged physical laws to describe human societies. Driven by advances in statistical physics, network science, data analysis, and information technology, this vision is becoming a reality. Many of the grandest challenges of our time are of a societal nature, and methods of physics are increasingly playing a central role in improving our understanding of these challenges, and helping us to fnd innovative solutions. The Social physics Collection at Scientifc Reports is dedicated to this research. lthough we are unique and hardly predictable as individuals, research has shown that in a collective we ofen behave no diferently than particles in matter1. Indeed, many aspects of collective behavior in human societies have turned out to be remarkably predictable, and this fact has paved the way for methods of Aphysics to be applied to many contemporary societal challenges. Examples include trafc2, crime3, epidemic pro- cesses4, vaccination5, cooperation6, climate inaction7, as well as antibiotic overuse8 and moral behavior9, to name just some examples. In fact, possible synergies between physical and social sciences have been foating around in the scientifc literature for centuries. Over two centuries ago, the French political and economic theorist Henri de Saint-Simon was amongst the frst to propose that society could be described by laws similar to those in physics10. However, similar ideas have been around already in the 17th century, when Tomas Hobbes based his theory of the state on the laws of motion, in particular on the principle of inertia, which was then deduced by his contemporary Galileo Galilei11. Te ‘invisible hand’ proposed by Adam Smith in the second half of the 18th century is also eerily similar to the now famous notions of economic and social self-organization12,13, and at the time was deemed to be as dependable in operation as the law of gravity14. And in the 19th century, the evolving physical theories of matter as a vast collection of atoms and molecules inspired a statistical view of societies and the predictable averages therein. Just as the random movements of molecules in a gas yield the mathematically simple gas laws, it was fathomed that societies may also be predictable in the collective scale. Tus, as Philip Ball argued aptly10, early sociology was indeed constructed according to an unspoken faith that there was a kind of ‘physics of society’. But despite the long and fascinating history, it was not before the very end of the 20th century that truly remarkable progress had begun along the interface of physical and social sciences. Tis progress has been driven by advances in statistical and theoretical physics, by the coming of age of network science15 and computational social science16, and by the relentless innovations in computer and information technology. Te result today is social physics, or the physics of social systems, which is rapidly gaining momentum and developing into a research tour de force for a better tomorrow. Te Social physics Collection at Scientifc Reports is dedicated to this line of research, and afer only half a year in the making underlines its strong potential. Given the diversity of the topics that are covered by social physics, it is challenging to pull a common thread through, and even to select, contributions that have been published thus far in a brief editorial. Terefore, in what follows, only a few representative examples are highlighted. Wachs and Kertész17 present a network-based framework to detect cartels – groups of frms that set prices collectively to increase profts at the expense of consumers – based on the interaction patterns between them. Tey apply their method to a school milk market in the Republic of Georgia that consists of nearly 150,000 public contracts, revealing groups of frms with high cohesion and exclusivity that are signifcantly more likely to display cartel behavior. Martinez-Vaquero et al.18 study the dynamics of recruitment into organized crime and terrorist networks, using evolutionary game theory as the backbone. Teir research identifes key factors that infuence the growth and decline of such criminal structures, and it reveals the convoluted interplay between agents that associate with illicit groups, criminals that act on their own, and the rest of the civil society. 1Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia. 2Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan. 3Complexity Science Hub Vienna, Josefstädterstraße 39, 1080, Vienna, Austria. email: [email protected] SCIENTIFIC REPORTS | (2019) 9:16549 | https://doi.org/10.1038/s41598-019-53300-4 1 www.nature.com/scientificreports/ www.nature.com/scientificreports De Nadai et al.19 study whether human cognition imposes constraints in the digital space similar to those that we know exist in the physical space, such as keeping the number of friends and favorite places stable over time. Indeed this seems to be the case, with the results painting an intriguing picture that links human behavior in the physical and digital worlds, bridging research across computer science, social physics, and computational social science. In addition to the three examples above, several other fascinating papers have been published recently, for example by Santos et al.20 studying the role of reward and punishment in climate change dilemmas, by Johnson et al.21 studying the emergent dynamics of extremes in a population driven by common information sources and new social media algorithms, and by Agarwal et al.22 studying the identifcation and characterization of telecon- nections on diferent scales through networks. Tere is no doubt that the Social physics Collection will amass a number of fascinating contributions over time. We encourage the readers to stay tuned, and we cordially invite prospective authors to consider contributing to the Collection. With all the current and upcoming scientifc and technological breakthroughs, it is easy to be excited about what the future holds. But there are formidable challenges up ahead as well. Examples include climate inaction, the depletion of natural resources, growing inequality, and perpetual conficts in some parts of the world. Tese challenges, although primarily of a societal nature, require insights from diferent felds of research to be solved successfully. And physics has in recent years emerged as an important piece of this puzzle. In the 20th century, physics gave us, among many other great discoveries, the atomic bomb. And although it would seem that peace and prosperity can sometimes beneft from such a show of strength, the hope is that the physics of the 21st century will give us a better understanding of our societies so that the universal goals of humanity can be achieved without force. If social physics will ultimately stand for that, all goals of this line of research would be achieved. Published: xx xx xxxx References 1. Castellano, C., Fortunato, S. & Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591–646 (2009). 2. Helbing, D. Trafc and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067 (2001). 3. D’Orsogna, M. R. & Perc, M. Statistical physics of crime: A review. Phys. Life Rev. 12, 1–21 (2015). 4. Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925 (2015). 5. Wang, Z. et al. Statistical physics of vaccination. Phys. Rep. 664, 1–113 (2016). 6. Perc, M. et al. Statistical physics of human cooperation. Phys. Rep. 687, 1–51 (2017). 7. Pacheco, J. M., Vasconcelos, V. V. & Santos, F. C. Climate change governance, cooperation and self-organization. Phys. Life Rev. 11, 573–586 (2014). 8. Chen, X. & Fu, F. Social learning of prescribing behavior can promote population optimum of antibiotic use. Front. Phys. 6, 193 (2018). 9. Capraro, V. & Perc, M. Grand challenges in social physics: In pursuit of moral behavior. Front. Phys 6, 107 (2018). 10. Ball, P. Why Society is a Complex Matter (Springer, Berlin, 2012). 11. Windolph, F. L. Leviathan and Natural Law (Princeton University Press, Princeton NJ, 1951). 12. Mantegna, R. N. & Stanley, H. E. Introduction to Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, U.K., 1999). 13. Helbing, D. Social Self-organization (Springer, Berlin, 2012). 14. Smith, A. Te Teory of Moral Sentiments (Strand & Edinburgh, U.K., 1759). 15. Barabási, A.-L. Te network takeover. Nat. Phys 8, 14–16 (2012). 16. Lazer, D. et al. Computational social science. Science 323, 721–723 (2009). 17. Wachs, J. & Kertész, J. A network approach to cartel detection in public auction markets. Sci. Rep 9, 10818 (2019). 18. Martinez-Vaquero, L. A., Dolci, V. & Trianni, V. Evolutionary dynamics of organised crime and terrorist networks. Sci. Rep 9, 9727 (2019). 19. De Nadai, M., Cardoso, A., Lima, A., Lepri, B. & Oliver, N. Strategies and limitations in app usage and human mobility. Sci. Rep 9, 10935 (2019). 20. Góis, A. R., Santos, F. P., Pacheco, J. M. & Santos, F. C. Reward and punishment in climate change dilemmas. Sci. Rep. 9, 16193 (2019). 21. Johnson, N. et al. Emergent dynamics of extremes in a population driven by common information sources and new social media algorithms. Sci. Rep 9, 11895 (2019). 22. Agarwal, A. et al. Network-based identifcation and characterization of teleconnections on diferent scales. Sci. Rep 9, 8808 (2019). Acknowledgements Tis work was supported by the Slovenian Research Agency (Grant Nos. J4-9302, J1-9112, and P1-0403). Competing Interests Te authors declare no competing interests. Correspondence and requests for materials should be addressed to M.P. Reprints and permissions information is available at www.nature.com/reprints. Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional afliations.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    3 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us