Mathematics, Course MATH40060 Differential Geometry September 23

Mathematics, Course MATH40060 Differential Geometry September 23

University College Dublin Mathematics, Course MATH40060 (formerly called MATH4105) Differential Geometry url:- http://mathsci.ucd.ie/courses/math40060 September 23, 2009 Dr. J. Brendan Quigley comments to:- Dr J.Brendan.Quigley Department of Mathematics University College Dublin, Belfield ph. 716–2584, 716–2580; fax 716–1196 email [email protected]. prepared using LATEX running under Redhat Linux drawings prepared using gnuplot ii c jbquig-UCD September 23, 2009 Contents 0 Organization of math40060 semester1 yr 09-10 1 1 geometry and SO(3,R) 3 1.1 Euclidean three space R3 .................................... 3 1.1.1 notation and technicalities . 3 1.1.2 geometric concepts; distance, angle, volume, orientation . 4 1.1.3 Cauchy-Schwarz inequality (CSI) . 4 1.1.4 justifying our definition of distance xx(1.1) . 5 1.1.5 justifying our definition of angle, (formula(1.2)) . 6 1.1.6 justifying the definition of signed volume . 6 1.1.7 positively oriented orthonormal basis . 8 1.1.8 special orthogonal change of basis matrix . 8 1.2 projection, reflection, rotation . 9 1.2.1 line and plane,vector resolution . 9 1.2.2 Five linear mappings and their matrices . 9 1.2.3 Five linear mappings by similarity transform . 12 1.2.4 characteristic polynomial, traces, determinant . 14 1.3 Lie group SO(3;R) and Lie algebra so(3;R) .......................... 15 1.3.1 the Lie group SO(3;R) ................................. 15 1.3.2 equivalence of special orthogonal and rotation . 17 1.3.3 rotation continuously varying in time . 19 1.3.4 the Lie algebra so(3;R) ................................. 20 1.3.5 SO(3;R) and so(3;R), standard form, eigenvalues and eigenvectors . 21 1.4 exponential matrix . 21 1.4.1 exp(0) .......................................... 23 1.4.2 exp(A)exp(B) ...................................... 23 1.4.3 powers and exponentials of similar matrices . 24 d 1.4.4 exp(tA) ....................................... 24 dt 1.4.5 Convergence of the exponential matrix power series . 25 1.5 exponential of angular velocity, exp(tDn); 2 so(3;R) ..................... 25 1.6 Euler angles . 26 1.6.1 formulae for rotation . 27 1.7 topology of SO(3;R) ...................................... 28 1.7.1 the Quaternionic sphere as a Lie group . 28 1.7.2 the Lie group SU(2;C) ................................. 28 1.7.3 the Lie algebra su(2;C) ................................ 29 1.7.4 su(2;C) as an inner product space . 29 1.7.5 mapping F from SU(2;C) to SO(3;R) ......................... 30 1.7.6 SU(2;C) is a double cover of SO(3;R)......................... 30 1.8 problem set ........................................... 31 iii iv CONTENTS 2 curves 35 2.1 plane curves . 35 2.1.1 parametrization of regular curves . 35 2.1.2 re parametrization . 36 2.1.3 velocity, speed, acceleration . 37 2.1.4 arc-length . 38 2.1.5 arc-length parametrization . 39 2.2 curvature . 42 2.2.1 technicalities . 42 2.2.2 the Serret-Frenet frame . 43 2.2.3 classical definition of curvature . 43 2.2.4 curvature as angular speed . 45 2.2.5 a.l.p. of the osculating circle . 46 2.2.6 formulae for t;n;k in R2 ................................ 47 2.2.7 involute and evolute . 48 2.3 curves in R3 ........................................... 49 2.3.1 curves in R3, basic definitions . 50 2.3.2 Serret-Frenet formulae . 52 2.3.3 3-space formulae for t;n;b;k;t ............................ 54 2.3.4 curves in R3 with constant curvature and torsion . 58 2.4 problem set ........................................... 61 3 surfaces 65 3.1 surfaces in R3 .......................................... 65 3.2 surface presentation . 65 3.2.1 presentation as a level set or contour . 65 3.2.2 graphical presentation . 66 3.2.3 parametric presentation . 66 3.3 first example, the sphere . 67 3.4 saddle and monkey saddle . 69 3.5 surface of revolution . 69 3.5.1 the sphere revisited . 70 3.5.2 the torus as surface of revolution . 70 3.5.3 hyperboloids and cone as surfaces of revolution . 70 3.6 ruled surfaces . 72 3.6.1 cylinder as ruled surface . 72 3.6.2 cone as ruled surface . 73 3.6.3 single sheeted hyperboloid as ruled surface . 73 3.6.4 saddle surface is doubly ruled . 73 3.6.5 the right helicoid or screw surface is ruled . 74 3.6.6 the tangent developable helicoid ruled surface . 74 3.7 charts, affine linear approximate . 74 3.7.1 chart, surface element . 74 3.7.2 affine linear approximate . 75 3.7.3 the tangent plane . 75 3.7.4 normal vector . 76 3.8 Gauss and Weingarten maps . 79 3.9 self adjointness of L ....................................... 80 3.10 eigenvalues and eigenvectors of a self adjoint mapping . 81 3.11 invariants of the Weingarten mapping . 81 3.12 geometric meaning of Weingarten mapping . 82 3.13 problem set ........................................... 83 c jbquig-UCD September 23, 2009 CONTENTS v 4 bilinear forms 85 4.1 definition of bilinear forms I; II and III . 85 4.2 matrix representation of the three fundamental forms . 85 4.2.1 the matrix of a form . 86 4.2.2 g,h,e matrices representing I;II;III . 86 4.2.3 the matrix of the Weingarten mapping . 88 4.2.4 Examples, computing g;h;e;L ............................. 88 4.3 explicit presentation and curvature . 93 4.4 surface as a graph over the tangent plane at a point . 95 4.5 problem set ........................................... 98 I Answers to problem sets of part I 101 5 Answers to questions in Chapter1 103 5.1 question and answer . 103 5.1.1 answer . 103 5.1.2 answer . 103 5.1.3 answer . 103 5.1.4 answer . 104 5.1.5 answer . 104 5.2 question and answer . 104 5.2.1 answer . 104 5.2.2 answer . 104 5.2.3 answer . 105 5.2.4 answer . 105 5.2.5 answer . 105 5.3 question and answer . 107 5.3.1 answer . 107 5.4 question and answer . 107 5.4.1 answer . 107 5.4.2 answer . 107 5.4.3 answer . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    153 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us