Index A shock, 20–23, 26, 28 bubble rebound, 47, 49 acoustic cavitation, 45, 46, 59, 60 Burgers–KdV equation, 17, 22 acoustic impedances, 37, 58 activation function, 203, 208, 221, 222 C shock, 23–27 adiabatic heating, 60 capacitance technique, 68, 86 air bubble, 37–43, 49, 52, 53, 56, 58–60 Carrol–Holt model, 332 anomalous reflection, 41, 42 cavitating liquid, 68, 73–75, 77, 79, 80, approximate Rankine–Hugoniot 82, 84 relations, 160, 172 cavitation, 35–37, 45, 48, 49, 52, 58, 59, arbitrary discontinuity, 80 99, 101 archetypal relaxation equation, 137 cavitation cloud, 45 asymptotic pressure profile, 160 cavitation erosion, 93 asymptotic solution, 203, 204, 206, cavitation nuclei, 35, 70, 72, 73, 85, 88, 220–223, 226 91, 92, 94 attenuation, 303, 346 cavitation process, 75, 80, 94 avalanche-like population, 73 cavitation threshold, 68, 85, 86, 89 cavitation zone, 68, 73, 75, 76, 78, 80, B shock, 23, 25–27 82, 83, 85–87, 93, 94 back-steepened shock, 118 cell disruption, 59 barriers, 272 classical nucleation theory, 189, 206, Benedict-Webb-Rubin equation, 234 209, 212, 251 blackbody, 59, 60 collapse time, 46 blood analog fluids, 91 combination structure, 70, 72 Bose–Einstein condensation, 103 compaction, 329 Bremsstrahlung, 60 compaction model, 313 bubble aspect ratio, 40 compaction wave, 286, 287 bubble cavitation, 68, 73, 78, 91 comparative magnitudes, 141 bubble cluster, 68, 72, 75, 94 complete evaporation, 161 bubble collapse, 35–37, 45, 46, 48, 49, complete liquefaction shock, 239, 244 51, 53, 54, 58–60 compression of molybdenum, 331 bubble distributions, 22 compression wave, 287 bubble flatness, 40 computer processing, 82 bubble form instability, 67 condensation front, 239 354 Index condensation induced flow oscillations, double exposure holographic 217 interferometry, 52 condensation induced shock waves, 187, double shock, 118, 129 202, 220, 223, 227 droplet growth, 190, 203, 205, 206, 208, condensation models, 190 209, 212, 221–223 condensation nuclei, 188, 203, 205, 208, droplet growth function, 203 211, 220 droplet growth parameter, 203 condensation rate equation, 202, 203, droplet growth zone, 205, 206, 208, 209, 208, 209, 212, 220–222, 226 221–223 condensation zones, 203, 205, 206, 222, droplet size spectrum, 228 223, 226 droplet temperature relaxation time, condensed explosives, 60 141 conservation equations, 143 dynamic branch, 88 convex-shaped boundary, 49 dynamics of free surface, 85–87 cooling rates, 187 copper powder, 339 elastoplastic model, 318 corner vortex, 256 electromagnetic shock tube, 68 corner wave, 38 embedded shock, 224 corrected Tait equation, 53 energy transfer, 140 coupled relaxation processes, 153, 165 entropy change, 236 critical amount of condensation, 168 entropy rise, 184 critical quantity of heat, 167 epoxy resin, 52 cryogenic fluid, 99–101 equations of motion, 299 cryogenic shock tube, 101, 112–114, equilibrated, 142 116, 119, 123 equilibrium, 138 cryostat, 100, 101, 119, 122, 125 equilibrium fully dispersed, 158 cumulative microjets, 89, 93 equilibrium isentropic exponent, 177 equilibrium isentropic index, 146, 171 ∆T shows unstable behaviour, 150 equilibrium Mach number, 147 ∆V becomes unstable, 151 equilibrium partly dispersed, 158 damage pit, 53–57 equilibrium speed of sound, 145 Damk¨ohler’s parameter, 138 equilibrium total pressure, 181, 184 decay of, 80 erosion, 36 deformation, 331 ESWL, 36, 45 deformation rate of cavitating liquid, 85 Eulerian–Lagrangian time-marching densification, 319 technique, 144 density distribution, 82 exact jump condition, 173, 175, 176 density of cavitation zone, 83 expansion fan, 201, 202, 220–222 density of microinhomogeneities, 71 destruction of tissue and cells, 68, 89 fibrinolysis by liquid jet impact, 91 deterioration, 346 finite volume, 144 diffraction effect, 86 finite-volume method, 321 diffraction node, 41 first sound, 104, 109–112 direct mechanism of failure, 92 flows with heat addition, 190–192, 196, discontinuity, 85 202 dislocation, 56 foam, 284, 297 dispersed wave, 293 foam collapses, 307 dispersion, 11–13, 17–19, 22, 28 frame stiffness, 306 dispersion equation, 7, 8, 26 free molecule, 141 Index 355 free-wave zone, 86 incompressible kernel, 335 frequency dispersion, 145 indicatrix petals, 70 front-steepened shock, 118 indirect mechanism, 92 frozen, 138 indium, 53–56 frozen Mach number, 146 inertial relaxation time, 139 frozen profile of mass velocities, 68, 83 influence coefficients in condensing flow, frozen speed of sound, 145, 194, 226 166 frozen total pressure, 181 initial growth zone, 203, 222 frozen total temperature, 184 integral approach, 167 fully dispersed shock wave, 148 internal state variable, 137 fully dispersed wave, 147 interpreting total pressure, 185 fully dispersed with complete ionization, 60 evaporation, 158 irreversible deformation, 88 fundamental derivative, 236 further growth zone, 203, 204, 208, jump conditions, 179 221–223 jump relations, 161 FWHM pulse duration, 47 Keller–Miksis model, 47 gallbladder, 48, 58 Khalatnikov approximate theory, 127 gas–particle mixture, 176, 177, 179 kidney, 48, 58 gas-saturated foam, 303 kidney stone disintegration, 68, 89 gelatin, 44, 58, 59 kinetics of condensation, 188 generation of entropy, 162 Klein–Gordon equation, 74, 75 Gibbs formation energy, 189 Knudsen number, 140 Gilmore model, 43 Gr¨uneisen coefficient, 326 λ-shock, 256 granular media, 325 lambda point, 102 grid, 272 lambda-phase transition, 116 group velocity, 26, 27 Landau two fluid equation, 106 laser surgery, 36 He I, 99, 102, 116, 125, 127, 128 latent heat, 232 He II, 99, 100, 102, 104–107, 112, 114, latent heat of condensation, 192, 202, 116, 117, 120, 124–128 211 heat capacity, 232, 234 Laval-nozzle, 242 heat conduction, 61 Levovist contrast agent bubble, 59 helium bubble, 39, 40 light attenuation, 249 heterogeneous heating, 342 light emission, 59, 61, 62 high heating, 329 limiting piston velocity, 164 high-strength compacts, 345 limiting wetness fraction, 174 hollow sphere model, 334 line of complete evaporation, 159 Hugoniot curve, 45 line of no discontinuity, 159 Hugoniot relations, 10, 17, 18 lipid bilayer, 48 hydrodynamic tube of rarefaction, 80 liquefaction, 232 hydrogen bubble, 39, 43, 44 liquefaction shock, 233 hysteresis effect, 94 liquid jet, 35–37, 42–45, 48, 49, 51–56, hysteresis loop, 219 58–61 liquid strength, 68, 88 IKW-model, 74 lithotripsy, 89, 90 incompressible fluid, 309 lithotripters, 46 356 Index loading time, 88 oblique impact, 289 Lorentz–Lorenz equation, 52 oblique reflection, 292 luminescence, 36, 59–61 oblique shock, 212, 219–223 onset front, 222, 224 Mach line, 42 onset zone, 204, 205, 208, 222, 223 mass transfer, 140 optimum bubble size, 46, 53, 56 MBSL, 59 oscillating front, 80 mechanocaloric effect, 105, 106 medical application, 89 partial liquefaction shock, 239, 244 membrane permeability, 48 particle beds, 292 method of characteristics, 220, 226 particle size, 343 micro-bubble, 94 particle velocity, 37–40 microinhomogeneities, 68, 70, 72, 73, partly dispersed shock wave, 147, 153 75, 84, 94 partly dispersed with complete microjet, 51, 53, 58 evaporation, 158 microkinetic energy, 335, 337 perforated plates, 272 microparticles, 70 permanent liquid, 102, 103 microreactor, 59 permeable, 272, 279 minimum bubble radius, 46 permeable media, 297 model gypsum, 90 phase boundaries, 233 model of instantaneous relaxation, 84 phase change, 60 molecular delivery, 36, 46, 47 phase separation, 228 molecular dynamics, 47 phase velocity, 301, 303 momentum transfer, 139 photon, 61 monodisperse distribution, 84 Pitot tube, 180 multiphase, 67 pk-model, 74, 76 Munroe jet, 44 plot of Rp versus St, 183 mutual friction term, 108 polyurethane foams, 284 pore collapse, 333 natural coordinates, 220 porosity, 325 negative pressures, 49 porous media, 271 non-dimensional total pressure, 182 PP3, 232, 246 non-equilibrium effects, 180 PP9, 246 non-equilibrium heating, 339 Prandtl–Meyer flows, 187, 220–223 non-equilibrium variable, 139 pre-threshold, 87 noninvasive destruction, 94 precursor, 74, 80 nonlinear steepening, 3, 17 pressure amplification, 271, 275, 284, normal fluid component, 103, 104, 106, 287 107, 111 pressure antinode, 45, 46 normal shock, 136 pressure impulse, 45, 46, 53 nucleation, 188, 189, 203–205, 207–215, pseudogas, 284 220–224, 226, 227, 231, pseudogas model, 297 251, 258 Pure Vapour–Droplet Medium, 138 nucleation parameter, 203, 204 nucleation zone with growth, 205, 221, quantized circulation, 109 223 quantized vortex, 108 numerical solution, 144 quantum effect, 102 numerical solution for a partly quasi-one-dimensional nozzle flow, 192, dispersed shock wave, 154 202, 222 Index 357 quasistatic mode, 337 shock tube flows, 225 quench of superconducting magnet, 101 shock wave, 68, 71, 74, 75, 77, 79, 80, 82, 84, 86, 87, 89–93 radical, 61 shock wave energy, 35, 47, 56 rain erosion, 52 shock wave front, 326 Rankine-Hugoniot equations, 136, 244 shock wave splitting, 322 rapid growth zone, 204, 208, 221–223 shock-induced cavitation, 94 rarefaction phase profiles, 77 similarity criterion, 75 rarefaction shocks, 237 similarity parameter, 75 rate process, 137 slip Reynolds number, 140 Rayleigh, 43 solitons, 3, 28, 30, 31 Rayleigh line relations, 191 sonoluminescence, 37, 59, 60, 62 Rayleigh’s spherical bubble collapse, 42 sonoporation, 47, 59 Rayleigh–Plesset equation, 3, 7, 8, 18 sound velocity, 3, 6, 13, 17 real gas dynamics, 231, 258 spall fracture, 88 real liquid state, 68 specific contact area, 341 reduced pressure, 237 specific humidity, 206 reduced temperature, 237 speeds of sound, 145 reduced volume, 237 SPH method, 347 reflectivity,
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages13 Page
-
File Size-