Boundary Layer Theory

Boundary Layer Theory

BOUNDARY LAYER THEORY HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body where viscous forces dominate over inertia forces ⎛ inertia forces ⎞ Re = ⎜ ⎟ Re >> 1 ⎝viscous forces ⎠ Boundary layer separation Wake: viscous effects not Outer flow Flow fieldimportant Viscouseffect aroundvorticityan not s negligible Inner flowarbitraryzero Vorticity zero Strongshape (Inviscid viscous potential flow) effects Steady ,incompressible 2-D flow with no body ddθ * 1 Uτ 0 ∂u n ++(2δθ) = forces. Valid for laminar flow τ 0 ∼ () dx θρdx U 2 dy O.D.E for θ () x To solve eq. we first ”assume” an approximate velocity profile inside the B.L Relate the wall shear stress to the velocity field Typically the velocity profile is taken to be a polynomial in y, and the degree of fluid this polynominal determines the number of boundary conditions which may be satisfied u EXAMPLE: =+abη +cηη2 =f () LAMINAR FLOW OVER A FLAT PLATE: U U∞ U ≈ 0,99U∞ • Laminar boundary layer predictable • Turbulent boundary layer poor predictability UL • Controlling parameter Re = ν • To get two boundary layer flows identical match Re (dynamic similarity) • Although boundary layer’s and prediction are complicated,simplify the N-S equations to make job easier High Reynolds Number Flow 2-D , planar flow uv, xy, u* = v * = , x*, y*= U∞ L → Dimensionless gov. eqs. ∇.0V = **** 2*2* ∂∂uu**∂u∂P1 ∂u∂u X ; ++u ν =−+()22+ ∂∂tx∂y ∂xxRe∂∂y viscous terms * P P = 2 22 ∂∂ν νν∂ ∂P 1 ∂ν∂ν ρU∞ Y; ++u ν =−+()+ ∂∂tx∂y∂yRe ∂x22∂y “Naïve” way of solving problem for 1 Re →∞ → 0 Re If you drop the viscous term Euler’s eqs. (inviscid fluid) • We can not satisfy all the boundary B.C.s because order of eqs. Reduces by 1 Inside B-L can not get rid of viscous terms U∞ U∞ U (x,y) y δ δ 1 δ * =〈 L 100 L Derivation of B-L eqs. From the N-S eqs • Physically based argument :determine the order of terms in N-S • Limiting procedure as Re ∞ eqs. and throw out small terms Assumption 1 δ δ * =〈〈1 L Term Order * (1) ∂u =1 (1) ∂x* δ * ∂ν * =1 δ * ∂y* v* δ * * * ∂ν δ * = δ ∂x* 1 ∂2*u 1 2 ∂y*2 δ * * du ∂u* u* =1 dt* ∂x* ∂∂uu**∂u*∂P*1 ∂2u*∂2u* ++u**ν =−+()+ ∂∂tx∂y∂xRe ∂x22∂y (1) (1) * 1 (1) (1) δ =1 (1) *2 * =1 δ 2 *2 δ (1) (1) ()δ Neglect since of order (1) *2 >>>1 Also for y –direction ()δ * * * * 2* 2* ∂∂ν **νν∂∂P 1 ∂ν∂ν ++u ν =−+()22+ ∂∂tx**∂y*∂y*Re ∂∂xy** * * ()δ * ()δ ** (1) ()δ *2 δδ * (1) * ()δ { + } ()δ (1) 2*(δ ) 2 * ()δ * * * ()δ ()δ ()δ ∂P* ∂P* ()δ * small relative to (1) ∂y* ∂x* To good approximation P ≅ Px() pressure at the edge of B- L. is equal to pressure on boundary layer. • Time – dependant P ≅ Px (, t ) known from the other flow • Pressure at all points is the same • Only need to consider x-direction B-L. eqs. Prandtl (1904) Outer flow (inviscid) y 2-D planar x Governing ∂∂uv +=0 1) ∂∂xy eqs.for B.L B-L.eqs. ∂∂uu∂u1 ∂P∂2u 2) ++=uv− +ν still non-linear ∂∂tx∂yρ ∂x∂y2 but parabolic type unknows u,v (x,y,t) PP≅ (,xt) known from the potential flow Need B.C.s & I.C.(time dependant) • 2-D, steady BCs • u=ν =0 at y=0 • u=u(y) at x=0 • u= U ∞ (x) y ∞ (y δ ) marching condition • B-L. eqs. can be solved exactly for several cases • Can approximate solution for other cases Limitation of B.L egs.: where they fail? (1) Abrupt chances (2) Eqs. are not applicable near the leading edge δ L is small δ * = 〈〈 1 invalid L (3) Where the flow separates not valid beyond the separation point Separation point Bernouilli eqs. ρ =constant PV2 11dP dV +=constant + 20U = ρ 2 ρ dx 2 dx Valid along the streamlines 1 dP dU −=U substitute the B.L eqs u,v can be found ρ dx dx known SIMILARITY SOLUTION TO B.L. EQS Example 1 Flow over a semi-infinite flat plate dp Zero pressure gradient = 0 p = constant dx dp Steady ,laminar & U=constant ( = 0 ) dx U y x 1 • Bernouilli eqs. outsideB.L pU+=ρ 2 cons. dp 2 U=constant , = 0 dx Governing (B.L. eqs.) become ∂∂u ν +=0 (1) ∂∂xy ∂∂uu∂2u uv+=ν (2) ∂∂x yy∂2 B.C. • y=0 u= v =0 (no-slip) & y ∞ , u U • x=0 u=U Blasuis(1908) : 1.Introduce the stream function ψ (x,y) • Recall ; ∂ψ ∂ψ u = ν =− ∂y ∂x note that ψ satisfies cont. eqs. substitute intoB.L. mom. Eqs ∂∂ψ 22ψψ∂∂ψ ∂3ψ ..−=ν (2’) ∂∂y x∂y ∂x ∂yy23∂ • Now, assume that we have a similarity “stretching” variable, which has all velocity profiles on plate scaling on . δ i.e uy = f () y U∞ δ δ x dimensional analysis δ = gU(,∞ x,ν ) δ Ux 1 ==gg()∞ (Re) ∼()δ 2 δ ∼ ν x ν Re ν x 2 δ ∼ mm δ 1 U ..sm= [] ∼ both ()δ ∞ sm x Rex Viscous dif. Depth Ux ν x Re = ∞ δ ≈ 5 ν U∞ y Let η = [-] similarity variable δ U u η = y ∞ = f ()η ν x U Use similarity profile assumption to turn 2 P.D.E 1 O.D.E ∂ ψ yy η ν x u = ψ ==udy Uf ()ηηdy =Uf () dη ∂ y x = fixed ∫∫ ∫ 00 0 U η ψ ==Uxνη∫ f()dηUxνF()η 0 ψ = UxνηF() F()η U ψ = UxνηF() η = y ∞ ν x y ∂ψ ∂ψ ψ −=ψ udy ddψ =+y dx 0 ∫ ∂∂yx 0 •Now, substitute ψ into P.D.E for ψ (x,y) to get O.D.E for F(η ) ∂∂ψ 1 U ν η =+∞ FUν xF' ' dF dF2 ∂∂xx2 ∞ x F = F '' = dη dη 2 ∂η 11U∞ 1 ∂ψ 1 U ν ' ∂ψ U =− y =− η =−∞ ()FFη ==Uxν F''∞ UF ∂xx22ν xx ∂xx2 ∂yx∞∞ν ∂2ψ U 2 3 2 =− ∞ ηF '' ∂ ψ U∞ '' ∂ ψ U∞ ''' = UF∞ = F ∂∂xy 2x ∂y2 ν x ∂yx3 ν Substituting into eq. (2’) 2 11 UU∞∞⎡⎤1 ν 22⎡U∞⎤U∞ UF∞∞'(−−ηηF''') ⎢⎥( ) (F−F') ⎢U( ) F''⎥=νF''' 22xx⎣⎦⎣ννx⎦x or U 2 1 U 2 1 U 2 U 2 − ∞ η F '' F '− ∞ FF'' + ∞ ηFF'' ' = ∞ F ''' 2x 2 x 2 x x 1 FF'''+=F'' 0 blasius eq. 3rd order , non linear ODE 2 U Note: FF ''' += F '' 0 for η = y ∞ BVP 2ν x BC’s are At y=0 u=v=0 η = 0 ∂ψ F’(0)=0 BC 1) u ==0 UF∞ '0= y=0 η =0 ∂y y=0 1 U ν F(0)=0 BC 2) ν = 0 − ∞ ('FF−=η )0 y=0 2 x BC 3) (x,y ∞ ) U ∞ ∂ψ →U UF' = U F '(η →∞) 1 F '(∞) = 1 ∞ ∞∞η→∞ ∂y y→∞ F( η ) dimensionless function Or At x=0 uU= UF∞∞' x=0 = U ∞ η→∞ F’( ∞ )=1 same with BC 3) Matching B.C • Solution to blasius eg a)power series b)runge-kutta • results tabulated form for F,F’,F’’,etc p.g 121 U u η = y ∞ F F ' = F '' ν x U∞ 0 0 0 0.33206 5.0 3.28329 0.99155 0.01591 F’’= 0.33206 From the solution • Velocity profile U = y ∞ γ x η 5 5 F’= u ν U∞ Re U x 0.8 ∞ 1 U ν ∂ψ 1 U ν ην→∞ = ∞ (5x1−3.28) ν =− = ∞ ('ηFF− ) ∞ 2 x ∂xx2 ν ∞ 1 ν 1 − 1 = 0.86 =−Re 2 ηFF' x [] U ∞ Rex U∞ 2 Shear stress distribution along the flat plate ∂∂u ν τµ=+( ) τ(x, y) 4 ν ∞ 1 ∂∂yx For Rex =⇒10 =0.00865 ≈ U∞ 100 ∂∂uu**ν ∂ τµ≅ 6 ν ∞ 1 ** For Re =⇒10 =0.000865 ≈ ∂∂yx ∂y x U∞ 1000 ∂u At the wall (y=0) τµ0 ()x = ∂y y=0 τ w ()x 2 3 ∂ ψ U∞ U τµ()xU==µ F'' ∞ 0 2 ∞ η=0 τµ0 (xF) = ''(0) ∂yxy=0 ν ν x Distribution along the wall 0.332 Non dimensionalize : τ 2F ''(0) 0.664 Ux. C ==0 = Re = ν fxC f = 0.664 1 2 ν ρU RexxRe Ux 2 ∞ Friction coef. Note : x →⇒0 τ 0 →∞ y ν →∞ B.L eqs.are not valid near the leading edge x x Up to the point we are considering Drag force acting on the flat plate We have to integrate shear stress x = τ ()ζζd τ FD ∫ 0 0 ↓ per unit width x 3 21FbD = .328()U∞µρx x dimensionless drag coef.( CD ) we have 2 wetted sides 2F C = D A=2bx D 1 ρUA2 2 ∞ Width normal to the blackboard 1.328 56 CDx=< valid for laminar flow i.e for Re 5.10 to 10 Rex 6 for Rex >10 → turbulent drag becomes considerably greater Boundary Layer Thickness : δ U u ηη==yy∞ at 5 ⇒ =0.99 → =δ (Table) ν xU UU∞∞5x x 5 ≅≅δδ Rex = ννx Rex δ:defined as the distance from the wall for which u=0.99U∞ Boundary Layer Parameter (thicknesses) Most widely used is δ but is rather arbitrary y=δ when u=0.99 U∞ hard to establish more physical parameters are needed Displacement thickness: δ U ∞ U∞ * δ δ δ * an imaginary displacement of fluid from the surface to account for “lost” mass flow in boundary layer * . ∞∞ ∞ δ mutot ==ρρdyUdy=ρUdy−ρUdy or ∫∫∞∞∫ ∫∞ 00y=δ * 0 * −ρδU∞ ∞∞u ρδUU**=−(ρ ρu)dy δ=(1−)dy ∞∞∫∫ 00U∞ if ρδ=>cons.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    120 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us