Compensation of Multi-Channel Mismatches in High-Speed High-Resolution Photonic Analog- To-Digital Converter

Compensation of Multi-Channel Mismatches in High-Speed High-Resolution Photonic Analog- To-Digital Converter

Vol. 24, No. 21 | 17 Oct 2016 | OPTICS EXPRESS 24061 Compensation of multi-channel mismatches in high-speed high-resolution photonic analog- to-digital converter * GUANG YANG, WEIWEN ZOU, LEI YU, KAN WU, AND JIANPING CHEN State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China *[email protected] Abstract: We demonstrate a method to compensate multi-channel mismatches that intrinsically exist in a photonic analog-to-digital converter (ADC) system. This system, nominated time-wavelength interleaved photonic ADC (TWI-PADC), is time-interleaved via wavelength demultiplexing/multiplexing before photonic sampling, wavelength demultiplexing channelization, and electronic quantization. Mismatches among multiple channels are estimated in frequency domain and hardware adjustment are used to approach the device-limited accuracy. A multi-channel mismatch compensation algorithm, inspired from the time-interleaved electronic ADC, is developed to effectively improve the performance of TWI-PADC. In the experiment, we configure out a 4-channel TWI-PADC system with 40 GS/s sampling rate based on a 10-GHz actively mode-locked fiber laser. After multi-channel mismatch compensation, the effective number of bit (ENOB) of the 40-GS/s TWI-PADC system is enhanced from ~6 bits to >8.5 bits when the RF frequency is within 0.1-3.1 GHz and from ~6 bits to >7.5 bits within 3.1-12.1 GHz. The enhanced performance of the TWI-PADC system approaches the limitation determined by the timing jitter and noise. © 2016 Optical Society of America OCIS codes: (060.5625) Radio frequency photonics; (230.0250) Optoelectronics; (250.4745) Optical processing devices; (000.4430) Numerical approximation and analysis. References and links 1. H. F. Taylor, “An optical analog-to-digital converter-design and analysis,” IEEE J. Quantum Electron. 15(4), 210–216 (1979). 2. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007). 3. A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G. R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20(4), 4454–4469 (2012). 4. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014). 5. W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6, 19786 (2016). 6. K. G. Merkel and A. L. Wilson, “A survey of high performance analog-to-digital converters for defense space applications,” in IEEE Aerospace Conference (2003), pp. 2415–2427. 7. J. A. Wepman, “Analog-to-digital converters and their applications in radio receivers,” IEEE Commun. Mag. 33(5), 39–45 (1995). 8. G. E. Villanueva, M. Ferri, and P. Pérez-Millán, “Active and passive mode locked fiber lasers for high-speed high-resolution photonic analog-to-digital conversion,” IEEE J. Quantum Electron. 48(11), 1443–1452 (2012). 9. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001). 10. F. Su, G. Wu, and J. Chen, “Photonic analog-to-digital conversion with equivalent analog prefiltering by shaping sampling pulses,” Opt. Lett. 41(12), 2779–2782 (2016). 11. A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(11), 1081–1082 (1998). 12. Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical #273682 http://dx.doi.org/10.1364/OE.24.024061 Journal © 2016 Received 16 Aug 2016; revised 2 Oct 2016; accepted 2 Oct 2016; published 7 Oct 2016 Vol. 24, No. 21 | 17 Oct 2016 | OPTICS EXPRESS 24062 considerations,” J. Lightwave Technol. 21(12), 3085–3103 (2003). 13. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013). 14. G. Sefler, J. Chou, J. Conway, and G. Valley, “Distortion correction in a high-resolution time-stretch ADC scalable to continuous time,” J. Lightwave Technol. 28(10), 1468–1476 (2010). 15. S. Gupta and B. Jalali, “Time-warp correction and calibration in photonic time-stretch analog-to-digital converter,” Opt. Lett. 33(22), 2674–2676 (2008). 16. A. Yariv and R. G. M. P. Koumans, “Time interleaved optical sampling for ultra-high speed A/D conversion,” Electron. Lett. 34(21), 2012–2013 (1998). 17. R. C. Williamson, P. W. Juodawlkis, J. L. Wasserman, G. E. Betts, and J. C. Twichell, “Effects of crosstalk in demultiplexers for photonic analog-to-digital converters,” J. Lightwave Technol. 19(2), 230–236 (2001). 18. W. Ng, L. Luh, D. L. Persechini, D. Le, Y. M. So, M. Mokhtari, and J. E. Jensen, “Ultrahigh-speed photonic analog-to-digital conversion technologies,” in Proceedings of Defense and Security ISOP (2004), pp. 171–177. 19. G. Wu, S. Li, X. Li, and J. Chen, “18 wavelengths 83.9Gs/s optical sampling clock for photonic A/D converters,” Opt. Express 18(20), 21162–21168 (2010). 20. F. X. Kärtner, J. Kim, J. Chen, and A. Khilo, “Photonic Analog-to-Digital Conversion with Femtosecond Lasers,” Frequenz (Bern) 62(7–8), 171–174 (2008). 21. M. P. Fok, K. L. Lee, and C. Shu, “4× 2.5 GHz repetitive photonic sampler for high-speed analog-to-digital signal conversion,” IEEE Photonics Technol. Lett. 16(3), 876–878 (2004). 22. J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, “Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution,” Opt. Express 16(21), 16509–16515 (2008). 23. A. H. Nejadmalayeri, M. E. Grein, A. Khilo, J. Wang, M. Y. Sander, M. Peng, C. M. Sorace, E. P. Ippen, and F. X. Kaertner, “A 16-fs aperture-jitter photonic ADC: 7.0 ENOB at 40 GHz,” in CLEO 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThI6. 24. D. J. Esman, A. O. J. Wiberg, N. Alic, and S. Radic, “Highly linear broadband photonic-assisted Q-Band ADC,” J. Lightwave Technol. 33(11), 2256–2262 (2015). 25. G. Yang, W. Zou, X. Li, and J. Chen, “Theoretical and experimental analysis of channel mismatch in time- wavelength interleaved optical clock based on mode-locked laser,” Opt. Express 23(3), 2174–2186 (2015). 26. C. Vogel, “The impact of combined channel mismatch effects in time-interleaved ADCs,” IEEE Trans. Instrum. Meas. 54(1), 415–427 (2005). 27. N. Kurosawa, H. Kobayashi, K. Maruyama, H. Sugawara, and K. Kobayashi, “Explicit analysis of channel mismatch effects in time-interleaved ADC systems,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48(3), 261–271 (2001). 28. IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters, IEEE Standard 1241, 2000. http://ieeexplore.ieee.org/xpl/ articleDetails.jsp?arnumber = 929859&contentType = Standards. 29. B. Brannon, “Sampled systems and the effects of clock phase noise and jitter.” Analog Devices App. Note, AN- 756, (2004). 30. G. C. Valley, J. P. Hurrell, and G. A. Sefler, “Photonic analog-to-digital converters: fundamental and practical limits,” Proc. SPIE 5618, 96–106 (2004). 31. J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007). 32. O. Golani, L. Mauri, F. Pasinato, C. Cattaneo, G. Consonnni, S. Balsamo, and D. M. Marom, “A photonic analog-to-digital converter using phase modulation and self-coherent detection with spatial oversampling,” Opt. Express 22(10), 12273–12282 (2014). 33. T. R. Clark, J. U. Kang, and R. D. Esman, “Performance of a time- and wavelength-interleaved photonic sampler for analog-digital conversion,” IEEE Photonics Technol. Lett. 11(9), 1168–1170 (1999). 34. W. Ng, R. Stephens, D. Persechini, and K. V. Reddy, “Ultra-low jitter mode locking of Er-fibre laser at 10GHz and its application in photonic sampling for analogue-to-digital conversion,” Electron. Lett. 37(2), 113–114 (2001). 35. Q. Wu, H. Zhang, Y. Peng, X. Fu, and M. Yao, “40GS/s Optical analog-to-digital conversion system and its improvement,” Opt. Express 17(11), 9252–9257 (2009).</jrn> 1. Introduction Photonic analog-to-digital converter (PADC) technology has been developing rapidly in recent decades because it benefits from the low timing jitter of optical pulse trains [1–3]. The PADCs provide alternative solutions to electronic analog-to-digital converters (EADCs) for diverse applications of radar [4,5], surveillance [6], and telecommunications [7]. As comprehensively summarized in [2,3], one of the typical PADC with high speed and high resolution is called the photonic sampled and electronic quantized PADC. In this PADC [2,3], a stable pulsed laser works as a sampling source [8], an optical modulator serves as a sampling gate for RF signal, and an array of photo-detectors (PDs) is employed to convert the sampled optical signal to the sampled electronic signal that is electronically quantized by an Vol. 24, No. 21 | 17 Oct 2016 | OPTICS EXPRESS 24063 array of EADCs.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    14 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us