REVIEW PAPER IEICE Electronics Express, Vol.14, No.20, 1–16 Organic light-emitting and photodetector devices for flexible optical link and sensor devices: Fundamentals and future prospects in printed optoelectronic devices for high-speed modulation Hirotake Kajiia) Graduate School of Engineering, Osaka University, 2–1 Yamada-oka, Suita, Osaka 565–0871, Japan a) [email protected] Abstract: This paper describes the application of organic photonic devices including organic light-emitting and photodetector devices to integrated photonic devices for the realization of flexible optical link and sensor devices. Fundamentals and future prospects in printed optoelectronic devices for high-speed modulation are discussed and reviewed. Keywords: organic light-emitting diodes, organic photodetectors, organic light-emitting transistor, high speed, printed electrodes, sensor Classification: Electron devices, circuits and modules References [1] M. A. Baldo, et al.: “Very high-efficiency green organic light emitting devices based on electro-phosphorescence,” Appl. Phys. Lett. 75 (1999) 4 (DOI: 10. 1063/1.124258). [2] H. Uoyama, et al.: “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492 (2012) 234 (DOI: 10.1038/nature11687). [3] Y. Ohmori, et al.: “Realization of polymeric optical integrated devices utilizing organic light emitting diodes and photo detectors fabricated on a polymeric waveguide,” IEEE J. Sel. Top. Quantum Electron. 10 (2004) 70 (DOI: 10.1109/ JSTQE.2004.824106). [4] H. Kajii, et al.: “Organic light-emitting diode fabricated on a polymer substrate for optical links,” Thin Solid Films 438–439 (2003) 334 (DOI: 10.1016/S0040- 6090(03)00753-3). [5] H. Kajii, et al.: “Transient properties of organic electroluminescent diode using 8-Hydroxyquinoline aluminum doped with rubrene as an electro-optical conversion device for polymeric integrated devices,” Jpn. J. Appl. Phys. 41 © IEICE 2017 DOI: 10.1587/elex.14.20172002 (2002) 2746 (DOI: 10.1143/JJAP.41.2746). Received August 31, 2017 “ Accepted September 8, 2017 [6] T. Morimune, et al.: Frequency response properties of organic photo-detectors Published October 25, 2017 1 IEICE Electronics Express, Vol.14, No.20, 1–16 as opto-electrical conversion devices,” J. Display Technol. 2 (2006) 170 (DOI: 10.1109/JDT.2006.874505). [7] G. Gu, et al.: “Transparent organic light emitting devices,” Appl. Phys. Lett. 68 (1996) 2606 (DOI: 10.1063/1.116196). [8] T. Morimune, et al.: “Semitransparent organic photodetectors utilizing sputter- deposited indium tin oxide for top contact electrode,” Jpn. J. Appl. Phys. 44 (2005) 2815 (DOI: 10.1143/JJAP.44.2815). [9] C. M. Lochner, et al.: “All-organic optoelectronic sensor for pulse oximetry,” Nat. Commun. 5 (2014) 5745 (DOI: 10.1038/ncomms6745). [10] T. Yokota, et al.: “Ultraflexible organic photonic skin,” Sci. Adv. 2 (2016) e1501856 (DOI: 10.1126/sciadv.1501856). [11] A. K. Bansal, et al.: “Wearable organic optoelectronic sensors for medicine,” Adv. Mater. 27 (2015) 7638 (DOI: 10.1002/adma.201403560). [12] H. Kajii, et al.: “Organic light-emitting diodes with highly conductive polymer electrodes as anode and their stress tolerance,” Jpn. J. Appl. Phys. 47 (2008) 460 (DOI: 10.1143/JJAP.47.460). [13] D. J. Lipomi, et al.: “Stretchable organic solar cells,” Adv. Mater. 23 (2011) 1771 (DOI: 10.1002/adma.201004426). [14] M. S. White, et al.: “Ultrathin, highly flexible and stretchable PLEDs,” Nat. Photonics 7 (2013) 811 (DOI: 10.1038/nphoton.2013.188). [15] M. A. Baldo, et al.: “Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation,” Phys. Rev. B 62 (2000) 10967 (DOI: 10.1103/PhysRevB.62.10967). [16] H. Kajii, et al.: “Current-density dependence of transient properties in green phosphorescent organic light-emitting diodes,” Jpn. J. Appl. Phys. 50 (2011) 04DK05 (DOI: 10.7567/JJAP.50.04DK05). [17] Y. Ohmori, et al.: “Development of polymeric electro-optical devices — the early stage, present and to the future—,” IEICE Trans. Electron. (Japanese Edition) J99-C (2016) 659. [18] H. Kajii, et al.: “Multilayer polyfluorene-based light-emitting diodes for frequency response up to 100 MHz,” IEICE Trans. Electron. E94-C (2011) 190 (DOI: 10.1587/transele.E94.C.190). [19] J. Huang, et al.: “Achieving high-efficiency polymer white-light-emitting devices,” Adv. Mater. 18 (2006) 114 (DOI: 10.1002/adma.200501105). [20] J. Huang, et al.: “Low-work-function surface formed by solution-processed and thermally deposited nanoscale layers of cesium carbonate,” Adv. Funct. Mater. 17 (2007) 1966 (DOI: 10.1002/adfm.200700051). [21] H. Wu, et al.: “Efficient electron injection from a bilayer cathode consisting of aluminum and alcohol-/water-soluble conjugated polymers,” Adv. Mater. 16 (2004) 1826 (DOI: 10.1002/adma.200400067). [22] J. Fang, et al.: “Conjugated zwitterionic polyelectrolyte as the charge injection layer for high-performance polymer light-emitting diodes,” J. Am. Chem. Soc. 133 (2011) 683 (DOI: 10.1021/ja108541z). [23] T. Yamamoto, et al.: “Improved electron injection from silver electrode for all solution-processed polymer light-emitting diodes with Cs2CO3: Conjugated polyelectrolyte blended interfacial layer,” Org. Electron. 15 (2014) 1077 (DOI: 10.1016/j.orgel.2014.02.019). [24] T. Someya, et al.: “Integration of organic FETs with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE Trans. Electron Devices 52 (2005) 2502 (DOI: 10.1109/TED.2005.857935). [25] T. N. Ng, et al.: “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett. 92 (2008) 213303 (DOI: 10.1063/1.2937018). © IEICE 2017 [26] P. Peumans, et al.: “Efficient, high-bandwidth organic multilayer photo- DOI: 10.1587/elex.14.20172002 Received August 31, 2017 detectors,” Appl. Phys. Lett. 76 (2000) 3855 (DOI: 10.1063/1.126800). Accepted September 8, 2017 Published October 25, 2017 2 IEICE Electronics Express, Vol.14, No.20, 1–16 [27] T. Morimune, et al.: “High-speed organic photodetectors using heterostructure with Phthalocyanine and Perylene derivative,” Jpn. J. Appl. Phys. 45 (2006) 546 (DOI: 10.1143/JJAP.45.546). [28] T. Morimune, et al.: “Photoresponse properties of a high-speed organic photodetector based on Copper–Phthalocyanine under red light illumination,” IEEE Photonics Technol. Lett. 18 (2006) 2662 (DOI: 10.1109/LPT.2006. 887786). [29] G. Li, et al.: “High-efficiency solution processable polymer photovoltaic cells,” Nat. Mater. 4 (2005) 864 (DOI: 10.1038/nmat1500). [30] T. Takahashi, et al.: “Carbon nanotube active-matrix backplanes for mechanically flexible visible light and X-ray imagers,” Nano Lett. 13 (2013) 5425 (DOI: 10.1021/nl403001r). [31] G. H. Gelinck, et al.: “X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate,” Org. Electron. 14 (2013) 2602 (DOI: 10.1016/j.orgel.2013.06.020). [32] M. Ramuz, et al.: “High sensitivity organic photodiodes with low dark currents and increased lifetimes,” Org. Electron. 9 (2008) 369 (DOI: 10.1016/j.orgel. 2008.01.007). [33] G. Azzellino, et al.: “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25 (2013) 6829 (DOI: 10.1002/adma.201303473). [34] Y. Sato, et al.: “Improved performance of polymer photodetectors using indium–tin-oxide modified by phosphonic acid-based self-assembled mono- layer treatment,” Org. Electron. 15 (2014) 1753 (DOI: 10.1016/j.orgel.2014. 04.037). [35] T. Hamasaki, et al.: “Fabrication and characteristics of polyfluorene based organic photodetectors using fullerene derivatives,” Thin Solid Films 518 (2009) 548 (DOI: 10.1016/j.tsf.2009.07.123). [36] A. Sharma, et al.: “Stabilization of the work function of indium tin oxide using organic surface modifiers in organic light-emitting diodes,” Appl. Phys. Lett. 93 (2008) 163308 (DOI: 10.1063/1.2998599). [37] A. Sharma, et al.: “Effects of surface modification of indium tin oxide electrodes on the performance of molecular multilayer organic photovoltaic devices,” J. Mater. Chem. 19 (2009) 5298 (DOI: 10.1039/b823148f ). [38] H. Kajii, et al.: “Improved characteristics of polymer photodetectors using phosphonic acid-based self-assembled monolayer treatment for interfacial- engineering of Ga-doped ZnO electrodes,” Proc. 24th Int. Workshop Active- Matrix Flatpanel Displays and Devices (AM-FPD) (2017) 288. [39] X. Liu, et al.: “Solution-processed ultrasensitive polymer photodetectors with high external quantum efficiency and detectivity,” ACS Appl. Mater. Interfaces 4 (2012) 3701 (DOI: 10.1021/am300787m). [40] X. Gong, et al.: “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325 (2009) 1665 (DOI: 10.1126/ science.1176706). [41] H. Seo, et al.: “Color sensors with three vertically stacked organic photodetectors,” Jpn. J. Appl. Phys. 46 (2007) L1240 (DOI: 10.1143/JJAP. 46.L1240). [42] H. Seo, et al.: “A 128 × 96 pixel stack-type color image sensor: stack of individual blue-, green-, and red-sensitive organic photoconductive films integrated with a ZnO thin film transistor readout circuit,” Jpn. J. Appl. Phys. 50 (2011) 024103 (DOI: 10.7567/JJAP.50.024103). [43] A. Hepp, et al.: “Light-emitting field-effect transistor based on a tetracene thin film,” Phys. Rev. Lett. 91 (2003) 157406 (DOI: 10.1103/PhysRevLett.91. © IEICE 2017 157406). DOI: 10.1587/elex.14.20172002 Received August 31, 2017 [44] K. Hiraoka, et al.: “Properties of polymer light-emitting transistors with Ag- Accepted September
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages16 Page
-
File Size-