Organic Light-Emitting and Photodetector Devices for Flexible

Organic Light-Emitting and Photodetector Devices for Flexible

REVIEW PAPER IEICE Electronics Express, Vol.14, No.20, 1–16 Organic light-emitting and photodetector devices for flexible optical link and sensor devices: Fundamentals and future prospects in printed optoelectronic devices for high-speed modulation Hirotake Kajiia) Graduate School of Engineering, Osaka University, 2–1 Yamada-oka, Suita, Osaka 565–0871, Japan a) [email protected] Abstract: This paper describes the application of organic photonic devices including organic light-emitting and photodetector devices to integrated photonic devices for the realization of flexible optical link and sensor devices. Fundamentals and future prospects in printed optoelectronic devices for high-speed modulation are discussed and reviewed. Keywords: organic light-emitting diodes, organic photodetectors, organic light-emitting transistor, high speed, printed electrodes, sensor Classification: Electron devices, circuits and modules References [1] M. A. Baldo, et al.: “Very high-efficiency green organic light emitting devices based on electro-phosphorescence,” Appl. Phys. Lett. 75 (1999) 4 (DOI: 10. 1063/1.124258). [2] H. Uoyama, et al.: “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492 (2012) 234 (DOI: 10.1038/nature11687). [3] Y. Ohmori, et al.: “Realization of polymeric optical integrated devices utilizing organic light emitting diodes and photo detectors fabricated on a polymeric waveguide,” IEEE J. Sel. Top. Quantum Electron. 10 (2004) 70 (DOI: 10.1109/ JSTQE.2004.824106). [4] H. Kajii, et al.: “Organic light-emitting diode fabricated on a polymer substrate for optical links,” Thin Solid Films 438–439 (2003) 334 (DOI: 10.1016/S0040- 6090(03)00753-3). [5] H. Kajii, et al.: “Transient properties of organic electroluminescent diode using 8-Hydroxyquinoline aluminum doped with rubrene as an electro-optical conversion device for polymeric integrated devices,” Jpn. J. Appl. Phys. 41 © IEICE 2017 DOI: 10.1587/elex.14.20172002 (2002) 2746 (DOI: 10.1143/JJAP.41.2746). Received August 31, 2017 “ Accepted September 8, 2017 [6] T. Morimune, et al.: Frequency response properties of organic photo-detectors Published October 25, 2017 1 IEICE Electronics Express, Vol.14, No.20, 1–16 as opto-electrical conversion devices,” J. Display Technol. 2 (2006) 170 (DOI: 10.1109/JDT.2006.874505). [7] G. Gu, et al.: “Transparent organic light emitting devices,” Appl. Phys. Lett. 68 (1996) 2606 (DOI: 10.1063/1.116196). [8] T. Morimune, et al.: “Semitransparent organic photodetectors utilizing sputter- deposited indium tin oxide for top contact electrode,” Jpn. J. Appl. Phys. 44 (2005) 2815 (DOI: 10.1143/JJAP.44.2815). [9] C. M. Lochner, et al.: “All-organic optoelectronic sensor for pulse oximetry,” Nat. Commun. 5 (2014) 5745 (DOI: 10.1038/ncomms6745). [10] T. Yokota, et al.: “Ultraflexible organic photonic skin,” Sci. Adv. 2 (2016) e1501856 (DOI: 10.1126/sciadv.1501856). [11] A. K. Bansal, et al.: “Wearable organic optoelectronic sensors for medicine,” Adv. Mater. 27 (2015) 7638 (DOI: 10.1002/adma.201403560). [12] H. Kajii, et al.: “Organic light-emitting diodes with highly conductive polymer electrodes as anode and their stress tolerance,” Jpn. J. Appl. Phys. 47 (2008) 460 (DOI: 10.1143/JJAP.47.460). [13] D. J. Lipomi, et al.: “Stretchable organic solar cells,” Adv. Mater. 23 (2011) 1771 (DOI: 10.1002/adma.201004426). [14] M. S. White, et al.: “Ultrathin, highly flexible and stretchable PLEDs,” Nat. Photonics 7 (2013) 811 (DOI: 10.1038/nphoton.2013.188). [15] M. A. Baldo, et al.: “Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation,” Phys. Rev. B 62 (2000) 10967 (DOI: 10.1103/PhysRevB.62.10967). [16] H. Kajii, et al.: “Current-density dependence of transient properties in green phosphorescent organic light-emitting diodes,” Jpn. J. Appl. Phys. 50 (2011) 04DK05 (DOI: 10.7567/JJAP.50.04DK05). [17] Y. Ohmori, et al.: “Development of polymeric electro-optical devices — the early stage, present and to the future—,” IEICE Trans. Electron. (Japanese Edition) J99-C (2016) 659. [18] H. Kajii, et al.: “Multilayer polyfluorene-based light-emitting diodes for frequency response up to 100 MHz,” IEICE Trans. Electron. E94-C (2011) 190 (DOI: 10.1587/transele.E94.C.190). [19] J. Huang, et al.: “Achieving high-efficiency polymer white-light-emitting devices,” Adv. Mater. 18 (2006) 114 (DOI: 10.1002/adma.200501105). [20] J. Huang, et al.: “Low-work-function surface formed by solution-processed and thermally deposited nanoscale layers of cesium carbonate,” Adv. Funct. Mater. 17 (2007) 1966 (DOI: 10.1002/adfm.200700051). [21] H. Wu, et al.: “Efficient electron injection from a bilayer cathode consisting of aluminum and alcohol-/water-soluble conjugated polymers,” Adv. Mater. 16 (2004) 1826 (DOI: 10.1002/adma.200400067). [22] J. Fang, et al.: “Conjugated zwitterionic polyelectrolyte as the charge injection layer for high-performance polymer light-emitting diodes,” J. Am. Chem. Soc. 133 (2011) 683 (DOI: 10.1021/ja108541z). [23] T. Yamamoto, et al.: “Improved electron injection from silver electrode for all solution-processed polymer light-emitting diodes with Cs2CO3: Conjugated polyelectrolyte blended interfacial layer,” Org. Electron. 15 (2014) 1077 (DOI: 10.1016/j.orgel.2014.02.019). [24] T. Someya, et al.: “Integration of organic FETs with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE Trans. Electron Devices 52 (2005) 2502 (DOI: 10.1109/TED.2005.857935). [25] T. N. Ng, et al.: “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett. 92 (2008) 213303 (DOI: 10.1063/1.2937018). © IEICE 2017 [26] P. Peumans, et al.: “Efficient, high-bandwidth organic multilayer photo- DOI: 10.1587/elex.14.20172002 Received August 31, 2017 detectors,” Appl. Phys. Lett. 76 (2000) 3855 (DOI: 10.1063/1.126800). Accepted September 8, 2017 Published October 25, 2017 2 IEICE Electronics Express, Vol.14, No.20, 1–16 [27] T. Morimune, et al.: “High-speed organic photodetectors using heterostructure with Phthalocyanine and Perylene derivative,” Jpn. J. Appl. Phys. 45 (2006) 546 (DOI: 10.1143/JJAP.45.546). [28] T. Morimune, et al.: “Photoresponse properties of a high-speed organic photodetector based on Copper–Phthalocyanine under red light illumination,” IEEE Photonics Technol. Lett. 18 (2006) 2662 (DOI: 10.1109/LPT.2006. 887786). [29] G. Li, et al.: “High-efficiency solution processable polymer photovoltaic cells,” Nat. Mater. 4 (2005) 864 (DOI: 10.1038/nmat1500). [30] T. Takahashi, et al.: “Carbon nanotube active-matrix backplanes for mechanically flexible visible light and X-ray imagers,” Nano Lett. 13 (2013) 5425 (DOI: 10.1021/nl403001r). [31] G. H. Gelinck, et al.: “X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate,” Org. Electron. 14 (2013) 2602 (DOI: 10.1016/j.orgel.2013.06.020). [32] M. Ramuz, et al.: “High sensitivity organic photodiodes with low dark currents and increased lifetimes,” Org. Electron. 9 (2008) 369 (DOI: 10.1016/j.orgel. 2008.01.007). [33] G. Azzellino, et al.: “Fully inkjet-printed organic photodetectors with high quantum yield,” Adv. Mater. 25 (2013) 6829 (DOI: 10.1002/adma.201303473). [34] Y. Sato, et al.: “Improved performance of polymer photodetectors using indium–tin-oxide modified by phosphonic acid-based self-assembled mono- layer treatment,” Org. Electron. 15 (2014) 1753 (DOI: 10.1016/j.orgel.2014. 04.037). [35] T. Hamasaki, et al.: “Fabrication and characteristics of polyfluorene based organic photodetectors using fullerene derivatives,” Thin Solid Films 518 (2009) 548 (DOI: 10.1016/j.tsf.2009.07.123). [36] A. Sharma, et al.: “Stabilization of the work function of indium tin oxide using organic surface modifiers in organic light-emitting diodes,” Appl. Phys. Lett. 93 (2008) 163308 (DOI: 10.1063/1.2998599). [37] A. Sharma, et al.: “Effects of surface modification of indium tin oxide electrodes on the performance of molecular multilayer organic photovoltaic devices,” J. Mater. Chem. 19 (2009) 5298 (DOI: 10.1039/b823148f ). [38] H. Kajii, et al.: “Improved characteristics of polymer photodetectors using phosphonic acid-based self-assembled monolayer treatment for interfacial- engineering of Ga-doped ZnO electrodes,” Proc. 24th Int. Workshop Active- Matrix Flatpanel Displays and Devices (AM-FPD) (2017) 288. [39] X. Liu, et al.: “Solution-processed ultrasensitive polymer photodetectors with high external quantum efficiency and detectivity,” ACS Appl. Mater. Interfaces 4 (2012) 3701 (DOI: 10.1021/am300787m). [40] X. Gong, et al.: “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science 325 (2009) 1665 (DOI: 10.1126/ science.1176706). [41] H. Seo, et al.: “Color sensors with three vertically stacked organic photodetectors,” Jpn. J. Appl. Phys. 46 (2007) L1240 (DOI: 10.1143/JJAP. 46.L1240). [42] H. Seo, et al.: “A 128 × 96 pixel stack-type color image sensor: stack of individual blue-, green-, and red-sensitive organic photoconductive films integrated with a ZnO thin film transistor readout circuit,” Jpn. J. Appl. Phys. 50 (2011) 024103 (DOI: 10.7567/JJAP.50.024103). [43] A. Hepp, et al.: “Light-emitting field-effect transistor based on a tetracene thin film,” Phys. Rev. Lett. 91 (2003) 157406 (DOI: 10.1103/PhysRevLett.91. © IEICE 2017 157406). DOI: 10.1587/elex.14.20172002 Received August 31, 2017 [44] K. Hiraoka, et al.: “Properties of polymer light-emitting transistors with Ag- Accepted September

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    16 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us