Manual to Accompany Agresti's Categorical Data

Manual to Accompany Agresti's Categorical Data

R (and S-PLUS) Manual to Accompany Agresti’s Categorical Data Analysis (2002) 2nd edition Laura A. Thompson, 2008© Table of Contents Introduction and Changes from First Edition .....................1 A. Obtaining the R Software for Windows.................................................................... 1 B. Libraries in S-PLUS and Packages in R.................................................................. 1 C. Setting contrast types using Options() .................................................................... 3 D. Credit for functions.................................................................................................. 3 E. Editing functions...................................................................................................... 3 F. A note about using Splus Menus............................................................................. 4 G. Notice of errors ....................................................................................................... 4 H. Introductions to the S Language ............................................................................. 4 I. References ............................................................................................................... 4 J. Acknowledgements.................................................................................................. 5 Chapter 1: Distributions and Inference for Categorical Data: ..................................................................................6 A. Summary of Chapter 1, Agresti .............................................................................. 6 B. Categorical Distributions in S-PLUS and R ............................................................ 6 C. Proportion of Vegetarians (Statistical Inference for Binomial Parameters)............. 8 D. The Mid-P-Value .................................................................................................. 11 E. Pearson’s Chi-Squared Statistic........................................................................... 11 F. Likelihood Ratio Chi-Squared Statistic ................................................................. 12 G. Maximum Likelihood Estimation........................................................................... 12 Chapter 2: Describing Contingency Tables .....................16 A. Summary of Chapter 2, Agresti ............................................................................. 16 B. Comparing two proportions ................................................................................... 18 C. Partial Association in Stratified 2 x 2 Tables ......................................................... 19 D. Conditional Odds Ratios ....................................................................................... 23 E. Summary Measures of Assocation: Ordinal Trends .............................................. 24 Chapter 3: Inference for Contingency Tables..................28 A. Summary of Chapter 3, Agresti ............................................................................. 28 B. Confidence Intervals for Association Parameters.................................................. 29 C. Testing Independence in Two-way Contingency Tables ....................................... 35 D. Following Up Chi-Squared Tests........................................................................... 37 E. Two-Way Tables with Ordered Classification........................................................ 39 F. Small Sample Tests of Independence ................................................................... 41 G. Small-Sample Confidence Intervals For 2x2 Tables ............................................. 44 Chapter 4: Generalized Linear Models............................50 A. Summary of Chapter 4, Agresti ............................................................................. 50 i B. Generalized Linear Models for Binary Data........................................................... 51 C. Generalized Linear Models for Count Data ........................................................... 56 D. Overdispersion in Poisson Generalized Linear Models......................................... 61 E. Negative Binomial GLIMs...................................................................................... 63 F. Residuals for GLIMs.............................................................................................. 65 G. Quasi-Likelihood and GLIMs................................................................................. 67 H. Generalized Additive Models (GAMs) ................................................................... 68 Chapter 5 : Logistic Regression.......................................72 A. Summary of Chapter 5, Agresti ............................................................................ 72 B. Logistic Regression for Horseshoe Crab Data ..................................................... 73 C. Goodness-of-fit for Logistic Regression for Ungrouped Data............................... 77 D. Logit Models with Categorical Predictors ............................................................. 78 E. Multiple Logistic Regression................................................................................. 82 F. Extended Example (Problem 5.17)....................................................................... 88 Chapter 6 – Building and Applying Logistic Regression Models .............................................................................92 A. Summary of Chapter 6, Agresti ............................................................................. 92 B. Model Selection..................................................................................................... 93 C. Using Causal Hypotheses to Guide Model Fitting................................................. 94 D. Logistic Regression Diagnostics ........................................................................... 96 E. Inference about Conditional Associations in 2 x 2 x K Tables ............................. 102 F. Estimation/Testing of Common Odds Ratio......................................................... 105 G. Using Models to Improve Inferential Power ........................................................ 106 H. Sample Size and Power Considerations ............................................................. 107 I. Probit and Complementary Log-Log Models ....................................................... 109 J. Conditional Logistic Regression and Exact Distributions ..................................... 111 K. Bias-reduced Logistic Regression ....................................................................... 116 Chapter 7 –Logit Models for Multinomial Responses ....117 A. Summary of Chapter 7, Agresti ........................................................................... 117 B. Nominal Responses: Baseline-Category Logit Models........................................ 118 C. Cumulative Logit Models..................................................................................... 121 D. Cumulative Link Models ...................................................................................... 125 E. Adjacent-Categories Logit Models....................................................................... 127 F. Continuation-Ratio Logit Models.......................................................................... 128 G. Mean Response Models ..................................................................................... 134 H. Generalized Cochran-Mantel Haenszel Statistic for Ordinal Categories ............ 139 Chapter 8 –Loglinear Models for Contingency Tables ..141 A. Summary of Chapter 8, Agresti ........................................................................... 141 B. Loglinear Models for Three-way Tables .............................................................. 142 C. Inference for Loglinear Models............................................................................ 145 ii D. Loglinear Models for Higher Dimensions ........................................................... 147 E. Loglinear-Logit Model Connection....................................................................... 150 F. Contingency Table Standardization..................................................................... 151 Chapter 9 –Building and Extending Loglinear Models...152 A. Summary of Chapter 9, Agresti ........................................................................... 152 B. Model Selection and Comparison....................................................................... 153 C. Diagnostics for Checking Models....................................................................... 155 D. Modeling Ordinal Assocations............................................................................ 156 E. Assocation Models .............................................................................................. 158 F. Association Models, Correlation Models, and Correspondence Analysis ............ 164 G. Poisson Regression for Rates............................................................................. 170 H. Modeling Survival Times ..................................................................................... 172 I. Empty Cells and Sparseness................................................................................ 174 Chapter 10 – Models for Matched Pairs ........................176 A. Summary of Chapter 10, Agresti ........................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    280 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us