Quantitative Methods in High-Frequency Financial Econometrics: Modeling Univariate and Multivariate Time Series

Quantitative Methods in High-Frequency Financial Econometrics: Modeling Univariate and Multivariate Time Series

Quantitative Methods in High-Frequency Financial Econometrics: Modeling Univariate and Multivariate Time Series Zur Erlangung des akademischen Grades eines Doktors der Wirtschaftswissenschaften (Dr. rer. pol.) von der Fakult¨atf¨ur Wirtschaftswissenschaften der Universit¨atKarlsruhe (TH) genehmigte DISSERTATION von M. Sc. Wei Sun Tag der m¨undlichen Pr¨ufung:30.11.2007 Referent: Prof. Dr. Svetlozar T. Rachev Korreferent: Prof. Dr. Andreas Geyer-Schulz Karlsruhe (2007) 2 Contents Acknowledgments 15 Preface 17 1 Introduction 19 2 Mining High-Frequency Financial Data 23 2.1 High-Frequency Financial Data . 25 2.2 Information Extraction and Knowledge Discovery . 27 2.2.1 Informative Data . 28 2.2.2 Data Quality . 31 2.2.3 Aggregation . 31 2.2.4 Data Cleaning . 33 2.2.5 Data Snooping . 34 2.2.6 Pattern Recognition . 35 2.3 Computational Data Mining . 37 2.3.1 Cluster Analysis . 37 2.3.2 K-Nearest-Neighbour Method . 41 2.3.3 Neural Networks . 42 2.3.4 Wavelet Analysis . 46 2.3.5 Other Methods . 47 2.4 Statistical Data Mining . 49 2.4.1 Robustness . 49 2.4.2 Visualization . 50 2.4.3 Standard Models . 50 3 4 CONTENTS 2.4.4 Nonparametric Methods . 51 2.5 Evaluation of Data Mining Methods . 52 2.5.1 Criteria Based on Statistical Goodness-of-fit Techniques . 53 2.5.2 Criteria Based on Score Functions . 55 2.5.3 Criteria Based on Loss Functions . 56 2.5.4 Criteria Based on Bayesian Methods . 57 2.5.5 Criteria Based on Computational Methods . 58 3 High-Frequency Financial Econometrics 61 3.1 Mechanisms in Economic Settings . 62 3.2 Formation of Market Price . 63 3.3 Transparency of the Market . 63 3.4 Liquidity of the Market . 64 3.5 Volatility of the Market . 65 3.6 Pattern Recognition and Stylized Facts . 68 3.6.1 Random Durations . 70 3.6.2 Distributional Properties of Returns . 70 3.6.3 Autocorrelation . 70 3.6.4 Seasonality . 71 3.6.5 Clustering . 71 3.6.6 Long-range Dependence . 72 4 Long Range Dependence and Fractal Processes 73 4.1 Estimation and Detection of LRD in the Time Domain . 73 4.1.1 The Rescaled Adjusted Range Approach . 73 4.1.2 ARFIMA Model . 75 4.1.3 Variance-Type Method . 76 4.1.4 Absolute Moments Method . 77 4.2 Estimation and Detection of LRD in the Frequency Domain . 78 4.2.1 Periodogram Method . 78 4.2.2 Whittle-Type Methods . 78 4.3 Econometric Modeling of LRD . 80 CONTENTS 5 4.3.1 GARCH-Type Extension . 80 4.3.2 Stochastic Volatility Type Extension . 81 4.3.3 Unit Root Type Extension . 81 4.3.4 Regime Switching Type Extension . 82 4.4 Fractal Processes and Long-Range Dependence . 82 4.4.1 Specification of the Fractal Processes . 82 4.4.2 Estimation of Fractal Processes . 84 4.4.3 Simulation of Fractal Processes . 87 4.4.4 Implications of Fractal Processes . 88 5 Modeling Univariate High-Frequency Time Series I 91 5.1 Introduction . 91 5.2 Specification of the self-similar processes . 93 5.2.1 Fractional Gaussian noise . 94 5.2.2 Fractional stable noise . 94 5.3 Empirical analysis . 95 5.3.1 Data and Methodology . 96 5.3.2 Preliminary Test . 97 5.3.3 Results . 99 5.4 Conclusions . 100 6 Modeling Univariate High-Frequency Time Series II 109 6.1 Introduction . 109 6.2 Point processes in modeling durations . 112 6.3 Empirical study . 115 6.3.1 The data . 116 6.3.2 The methodology of finding the best model . 116 6.4 Results . 117 6.4.1 Preliminary Tests . 117 6.4.2 Goodness of fit test . 120 6.5 Conclusions . 122 7 Modeling Multivariate High-Frequency Time Series I 133 6 CONTENTS 7.1 Introduction . 133 7.2 Unconditional copulas and tail dependence . 135 7.2.1 Definition of unconditional copulas and tail dependence . 135 7.2.2 Test of tail dependence . 137 7.3 Data and empirical methodology . 139 7.3.1 Data . 139 7.3.2 Empirical methodology . 141 7.4 Analysis of the marginal distribution . 142 7.4.1 The self-similarity parameter . 143 7.4.2 Specification of the self-similar processses . 143 7.4.3 Estimation of the self-similarity parameter . 144 7.4.4 The parameters of a stable Non-Gaussian distribution . 146 7.5 Simulating the co-movement of international equity markets . 147 7.5.1 Simulation of the marginal distribution . 147 7.5.2 Simulation of the multi-dimensional copulas . 148 7.6 Empirical results . 149 7.7 Conclusion . 152 8 Modeling Multivariate High-Frequency Time Series II 165 8.1 Introduction . 165 8.2 Skewed Student’s t Copula . 168 8.2.1 Multivariate skewed Student’s t distribution . 168 8.2.2 Simulation Algorithm . 170 8.3 L´evy Processes with Specifications . 171 8.3.1 L´evyprocessses . 171 8.3.2 L´evyStable Distribution . 172 8.3.3 Fractional Brownian Motion . 173 8.3.4 L´evyStable Motion . 173 8.4 Data and empirical methodology . 175 8.4.1 Data . 175 8.4.2 Empirical methodology . 176 8.4.3 Empirical results . 178 CONTENTS 7 8.5 Conclusions . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    226 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us