Math 4140/5530: Differential Geometry How Do We find Geodesics?

Math 4140/5530: Differential Geometry How Do We find Geodesics?

guess and check in Maple or computer software parallel transport—that a tangent vector stays parallel geodesic equations with Christoffel symbols (also useful for Einstein’s field equations) How do we find geodesics? http://i.stack.imgur.com/La4Hj.png https://i1.creativecow.net/u/1027/geodesicvoxel_binding.jpg covering symmetry γ 00 proof on the sphere used the surface normal U = R in γ along with Frenet equations how about more generally? Dr. Sarah Math 4140/5530: Differential Geometry How do we find geodesics? http://i.stack.imgur.com/La4Hj.png https://i1.creativecow.net/u/1027/geodesicvoxel_binding.jpg covering symmetry γ 00 proof on the sphere used the surface normal U = R in γ along with Frenet equations how about more generally? guess and check in Maple or computer software parallel transport—that a tangent vector stays parallel geodesic equations with Christoffel symbols (also useful for Einstein’s field equations) Dr. Sarah Math 4140/5530: Differential Geometry 0 0 0 α = ~xuu + ~xv v or equivalently α_ = ~xuu_ + ~xv v_ product rule 00 d ~ _ ~ ¨ d ~ _ ~ ¨ α =α ¨ = dt xuu + xuu + dt xv v + xv v chain rule = (~xuuu_ + ~xuv v_ )u_ + ~xuu¨ + (~xvuu_ + ~xvv v_ )v_ + ~xv v¨ 2 2 = ~xuuu_ + 2~xuv u_ v_ + ~xuu¨ + ~xvv v_ + ~xv v¨ Geodesic Equations on Surfaces in R3 with F = 0 3 f~xu; x~v ; Ug is a basis for R α00 has to be only in the normal direction, so (eventually) write it in the basis and set ~xu; x~v components = 0. 0 chain rule ~ du ~ dv α (t) = xu dt + xv dt Dr. Sarah Math 4140/5530: Differential Geometry product rule d ~ _ ~ ¨ d ~ _ ~ ¨ = dt xuu + xuu + dt xv v + xv v chain rule = (~xuuu_ + ~xuv v_ )u_ + ~xuu¨ + (~xvuu_ + ~xvv v_ )v_ + ~xv v¨ 2 2 = ~xuuu_ + 2~xuv u_ v_ + ~xuu¨ + ~xvv v_ + ~xv v¨ Geodesic Equations on Surfaces in R3 with F = 0 3 f~xu; x~v ; Ug is a basis for R α00 has to be only in the normal direction, so (eventually) write it in the basis and set ~xu; x~v components = 0. 0 chain rule ~ du ~ dv α (t) = xu dt + xv dt 0 0 0 α = ~xuu + ~xv v or equivalently α_ = ~xuu_ + ~xv v_ α00 =α ¨ Dr. Sarah Math 4140/5530: Differential Geometry chain rule = (~xuuu_ + ~xuv v_ )u_ + ~xuu¨ + (~xvuu_ + ~xvv v_ )v_ + ~xv v¨ 2 2 = ~xuuu_ + 2~xuv u_ v_ + ~xuu¨ + ~xvv v_ + ~xv v¨ Geodesic Equations on Surfaces in R3 with F = 0 3 f~xu; x~v ; Ug is a basis for R α00 has to be only in the normal direction, so (eventually) write it in the basis and set ~xu; x~v components = 0. 0 chain rule ~ du ~ dv α (t) = xu dt + xv dt 0 0 0 α = ~xuu + ~xv v or equivalently α_ = ~xuu_ + ~xv v_ product rule 00 d ~ _ ~ ¨ d ~ _ ~ ¨ α =α ¨ = dt xuu + xuu + dt xv v + xv v Dr. Sarah Math 4140/5530: Differential Geometry (~xvuu_ + ~xvv v_ )v_ + ~xv v¨ 2 2 = ~xuuu_ + 2~xuv u_ v_ + ~xuu¨ + ~xvv v_ + ~xv v¨ Geodesic Equations on Surfaces in R3 with F = 0 3 f~xu; x~v ; Ug is a basis for R α00 has to be only in the normal direction, so (eventually) write it in the basis and set ~xu; x~v components = 0. 0 chain rule ~ du ~ dv α (t) = xu dt + xv dt 0 0 0 α = ~xuu + ~xv v or equivalently α_ = ~xuu_ + ~xv v_ product rule 00 d ~ _ ~ ¨ d ~ _ ~ ¨ α =α ¨ = dt xuu + xuu + dt xv v + xv v chain rule = (~xuuu_ + ~xuv v_ )u_ + ~xuu¨ + Dr. Sarah Math 4140/5530: Differential Geometry 2 2 = ~xuuu_ + 2~xuv u_ v_ + ~xuu¨ + ~xvv v_ + ~xv v¨ Geodesic Equations on Surfaces in R3 with F = 0 3 f~xu; x~v ; Ug is a basis for R α00 has to be only in the normal direction, so (eventually) write it in the basis and set ~xu; x~v components = 0. 0 chain rule ~ du ~ dv α (t) = xu dt + xv dt 0 0 0 α = ~xuu + ~xv v or equivalently α_ = ~xuu_ + ~xv v_ product rule 00 d ~ _ ~ ¨ d ~ _ ~ ¨ α =α ¨ = dt xuu + xuu + dt xv v + xv v chain rule = (~xuuu_ + ~xuv v_ )u_ + ~xuu¨ + (~xvuu_ + ~xvv v_ )v_ + ~xv v¨ Dr. Sarah Math 4140/5530: Differential Geometry Geodesic Equations on Surfaces in R3 with F = 0 3 f~xu; x~v ; Ug is a basis for R α00 has to be only in the normal direction, so (eventually) write it in the basis and set ~xu; x~v components = 0. 0 chain rule ~ du ~ dv α (t) = xu dt + xv dt 0 0 0 α = ~xuu + ~xv v or equivalently α_ = ~xuu_ + ~xv v_ product rule 00 d ~ _ ~ ¨ d ~ _ ~ ¨ α =α ¨ = dt xuu + xuu + dt xv v + xv v chain rule = (~xuuu_ + ~xuv v_ )u_ + ~xuu¨ + (~xvuu_ + ~xvv v_ )v_ + ~xv v¨ 2 2 = ~xuuu_ + 2~xuv u_ v_ + ~xuu¨ + ~xvv v_ + ~xv v¨ Dr. Sarah Math 4140/5530: Differential Geometry u v = ~xu + ~xv + lU = Γuu~xu + Γuu~xv + lU c ~ u ~ v ~ ~ Γab called Christoffel symbols. xuv = Γuv xu + Γuv xv + mU = xvu. u v ~xvv = Γvv~xu + Γvv~xv + nU Geodesic Equations on Surfaces in R3 with F = 0 3 f~xu; x~v ; Ug is a basis for R α00 has to be only in the normal direction, so (eventually) write it in the basis and set ~xu; x~v components = 0. α_ = ~xuu_ + ~xv v_ 2 2 α¨ = ~xuuu_ + 2~xuv u_ v_ + ~xuu¨ + ~xvv v_ + ~xv v¨ ~xuu = ~xu + ~xv + U Dr. Sarah Math 4140/5530: Differential Geometry u v = Γuu~xu + Γuu~xv + lU c ~ u ~ v ~ ~ Γab called Christoffel symbols. xuv = Γuv xu + Γuv xv + mU = xvu. u v ~xvv = Γvv~xu + Γvv~xv + nU Geodesic Equations on Surfaces in R3 with F = 0 3 f~xu; x~v ; Ug is a basis for R α00 has to be only in the normal direction, so (eventually) write it in the basis and set ~xu; x~v components = 0. α_ = ~xuu_ + ~xv v_ 2 2 α¨ = ~xuuu_ + 2~xuv u_ v_ + ~xuu¨ + ~xvv v_ + ~xv v¨ ~xuu = ~xu + ~xv + U = ~xu + ~xv + lU Dr. Sarah Math 4140/5530: Differential Geometry u v ~xuv = Γuv~xu + Γuv~xv + mU = ~xvu. u v ~xvv = Γvv~xu + Γvv~xv + nU Geodesic Equations on Surfaces in R3 with F = 0 3 f~xu; x~v ; Ug is a basis for R α00 has to be only in the normal direction, so (eventually) write it in the basis and set ~xu; x~v components = 0. α_ = ~xuu_ + ~xv v_ 2 2 α¨ = ~xuuu_ + 2~xuv u_ v_ + ~xuu¨ + ~xvv v_ + ~xv v¨ u v ~xuu = ~xu + ~xv + U = ~xu + ~xv + lU = Γuu~xu + Γuu~xv + lU c Γab called Christoffel symbols. Dr. Sarah Math 4140/5530: Differential Geometry Geodesic Equations on Surfaces in R3 with F = 0 3 f~xu; x~v ; Ug is a basis for R α00 has to be only in the normal direction, so (eventually) write it in the basis and set ~xu; x~v components = 0. α_ = ~xuu_ + ~xv v_ 2 2 α¨ = ~xuuu_ + 2~xuv u_ v_ + ~xuu¨ + ~xvv v_ + ~xv v¨ u v ~xuu = ~xu + ~xv + U = ~xu + ~xv + lU = Γuu~xu + Γuu~xv + lU c ~ u ~ v ~ ~ Γab called Christoffel symbols. xuv = Γuv xu + Γuv xv + mU = xvu. u v ~xvv = Γvv~xu + Γvv~xv + nU Dr. Sarah Math 4140/5530: Differential Geometry ¨a a _ b _ c Or even more Einstein summation notation! x + Γbcx x = 0 http://scienceblogs.com/startswithabang/files/2013/07/einstein.jpg Geodesic Equations set ~xu; x~v components = 0. u 2 u u 2 1 1 b c u¨ + Γuuu_ + 2Γuv v_ u_ + Γvv v_ = 0 or x¨ + Γbcx_ x_ = 0 v 2 v v 2 2 2 b c v¨ + Γuuu_ + 2Γuv v_ u_ + Γvv v_ = 0 or x¨ + Γbcx_ x_ = 0 Dr. Sarah Math 4140/5530: Differential Geometry Geodesic Equations set ~xu; x~v components = 0. u 2 u u 2 1 1 b c u¨ + Γuuu_ + 2Γuv v_ u_ + Γvv v_ = 0 or x¨ + Γbcx_ x_ = 0 v 2 v v 2 2 2 b c v¨ + Γuuu_ + 2Γuv v_ u_ + Γvv v_ = 0 or x¨ + Γbcx_ x_ = 0 ¨a a _ b _ c Or even more Einstein summation notation! x + Γbcx x = 0 http://scienceblogs.com/startswithabang/files/2013/07/einstein.jpg Dr. Sarah Math 4140/5530: Differential Geometry ~xuu · ~xu + ~xu · ~xuu = 2~xuu · ~xu u v Also from a few slides up, ~xuu = Γuu~xu + Γuu~xv + lU, so u u ~xuu · ~xu = Γuu~xu · ~xu = ΓuuE Eu ~ ~ u u Eu Thus 2 = xuu · xu = ΓuuE so Γuu = 2E v Ev u Ev v Gu u Gu v Gv Similarly Γuu = − 2G ; Γuv = 2E ; Γuv = 2G ; Γvv = − 2E ; Γvv = 2G How do we find the Christoffel symbols? Elwin Bruno Christoffel and Albert Einstein http://www.ethbib.ethz.ch/aktuell/galerie/christoffel/Portr_gross.jpg http://scienceblogs.com/startswithabang/files/2013/07/einstein.jpg Rewrite ~xuu by taking uth partial of E = ~xu · ~xu Eu = Dr. Sarah Math 4140/5530: Differential Geometry u v Also from a few slides up, ~xuu = Γuu~xu + Γuu~xv + lU, so u u ~xuu · ~xu = Γuu~xu · ~xu = ΓuuE Eu ~ ~ u u Eu Thus 2 = xuu · xu = ΓuuE so Γuu = 2E v Ev u Ev v Gu u Gu v Gv Similarly Γuu = − 2G ; Γuv = 2E ; Γuv = 2G ; Γvv = − 2E ; Γvv = 2G How do we find the Christoffel symbols? Elwin Bruno Christoffel and Albert Einstein http://www.ethbib.ethz.ch/aktuell/galerie/christoffel/Portr_gross.jpg http://scienceblogs.com/startswithabang/files/2013/07/einstein.jpg Rewrite ~xuu by taking uth partial of E = ~xu · ~xu Eu = ~xuu · ~xu + ~xu · ~xuu = 2~xuu · ~xu Dr.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    27 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us