Pedotransfer functions for estimating water retention of alluvial soils 3 SOIL SCIENCE ANNUAL DOI: 10.2478/ssa-2018-0001 Vol. 69 No. 1/2018: 3–10 PIOTR HEWELKE1, EDYTA HEWELKE2*, RYSZARD OLESZCZUK1, MARCIN KWAS1 1 Warsaw University of Life Sciences – SGGW, Faculty of Civil and Environmental Engineering, Department of Environmental Improvement, Nowoursynowska Str. 159, 02-776, Warsaw, Poland 2 Warsaw University of Life Sciences – SGGW, Faculty of Civil and Environmental Engineering, Laboratory Water Center, Ciszewskiego Str. 6, 02-776, Warsaw, Poland The application of pedotransfer functions in the estimation of water retention in alluvial soils in ¯u³awy Wiœlane, northern Poland Abstract: The aim of the studies was the assessment of the usefulness of selected pedotransfer function for calculating the water retention of alluvial soils in ¯u³awy Wiœlane. ¯u³awy Wiœlane are an important area, both as far as agricultural production and environmental values are concerned. The analysis accounted for three models, i.e.: van Genuchten-Wösten, Varellyay and Miero- nienko, Hewelke et al. Based on 122 dataset of alluvial soils from the ¯u³awy area, the statistical relationships between the measured values of total available water and values calculated for individual models were analysed. The studies carried out indicate that the analysed pedotransfer functions are characterized by different compatibilities with results obtained by means of direct measurement. The lowest average errors of fit were obtained for the Hewelke et al. and van Genuchten models. Keywords: Soil water retention, water content of soils, matrix potential, total available water, multiple regression equations INTRODUCTION Lamorski et al. 2017, Oleszczuk et al. 2018). Among the developed models, we can distinguish continu- The water retention of soils is a functional rela- ous functions, enabling the moisture content of soil tionship between the matrix potential and volumetric (θ) to be calculated for any given matrix potential soil moisture content (pF curve). In agricultural eco- (h), as well as discontinuous functions, making it systems, it determines the choice of crops, crop yields possible to indicate the θ(h) relationships for characte- and necessary farming infrastructure and agro-tech- ristic θ values. Extensive compilations and an analysis nology (e.g. Hewelke et al. 2013, Czy¿ 2000). Know- of the models describing function for estimating ledge of soil water retention is essential to assessing water retention curves of soils can be found in particular the water balance, especially in short time frames as in Guber and Pachepsky (2010). Empirical material well as predicting soil droughts and the course of for the particular solutions covers a very diverse soil flooding in a catchment. Due to the complicated and sample set (collection) reaching as many as a few tho- time-consuming process of the direct measurement usand, e.g. Rawls and Brakensiek (1982) – 5320 samples, of the pF curve, indirect methods are proposed, using Wösten et al. (1999) – 4030 samples. relationships between the physical properties of soils ¯u³awy Wiœlane is an important area, both as far and their moisture content. These methods are referred as agricultural production and the natural environment to as pedotransfer functions and their suitability were are concerned. Due to the share of polders (approx. demonstrated by (e.g. Pachepsky and Rawls 2004, 45 thousand ha) and areas around polders (approx. Guber and Pachepsky 2010, Vereecken et al. 2010). 72 thousand ha), they pose a particular challenge to Studies on pedotransfer functions have been carried water management (Nowicki and Liziñski 2004). out by many authors (e.g. Trzecki 1974, 1976; Varallyay Alluvial soils make up over 90% of soils in Vistula and Mironienko 1979, Van Genuchten 1980, Rawls River Delta; they are characterised by high diversity, and Brakensiek 1982, Varallyay et al. 1982, Walczak from very light to very heavy textured soils. The 1984, Carsel and Parrish 1988, Wösten et al. 1999, peculiarity of ¯u³awy alluvial soils results from the Vereecken et al. 1989, 2010; Schaap et al. 2001, course of alluvial processes. The accumulation of Pachepsky and Rawls 2004, Walczak et al. 2004, Vistula river sediments under high humidity condi- Dexter et al. 2008, Gnatowski et al. 2006, 2010; tions causes specific soil compaction and further Guber and Pachepsky 2010, Skalova et al. 2011, Puhl- accumulation of organic matter. The ¯u³awy area is mann and von Wilpert 2012, Hewelke et al. 2013, considered one of the most valuable and most fertile 2015, 2017; Brogowski and Kwasowski 2015, in Poland (Orzechowski et al. 2004). The morphological * Dr. Edyta Hewelke, [email protected] http://ssa.ptg.sggw.pl/issues2018/691 4 PIOTR HEWELKE, EDYTA HEWELKE, RYSZARD OLESZCZUK, MARCIN KWAS and retention characteristics of these soils have been The model described by Hewelke et al. (2013) presented by Brandyk (1988) among others. Nearly comprises multiple regression equations and allows 40% of ¯u³awy Wiœlane is in a polder system, with to define characteristic states of moisture content at each polder characterized by significant agro-hydro- 7 values of the matrix potential expressed by the pF logical integrity. Because of this fact, knowledge of indicator on the basis of a known content of selected soil water retention comprises important information particle fractions, bulk density and specific density for rational water management both in the area of of soil and organic matter content. For the value of a given polder as well as the entire ¯u³awy water system. the potential corresponding to pF=2.0 and pF=4.2 The aim of the studies presented in the article was indicators, regression equations allowing for the the assessment of the suitability of selected pedotransfer moisture content of soil to be calculated take the form functions for calculating the retention abilities of of: ¯u³awy Wiœlane (Vistula River Delta) alluvial soils. 2 θpF=2.0 = (-18.7247 + 47.3855·ρb – 21.073·rb – METHODOLOGY 0.0855538·SPLAW + 0.000200187·SPLAW 2 – 0.00000689571·PIA 2 ·SPLAW + Three models of pedotransfers were analized: van 0.0240447·ρ ·SPLAW)2 Genuchten-Wösten (van Genuchten 1980, Wösten et p al. 1999), Varallyay and Mironienko (Varallyay and 2 Mironienko 1979, Varallyay et al. 1982) and Hewelke θpF=4.2= (-3.87197 + 17.8961·ρb – 9.75799·ρb – et al. (2013). 0.000323457·SPLAW 2 + 0.00618455· 2 2 Van Genuchten (1980) describes the θ(h) depen- ρb PIA – 0.0000108911·PIA ·SPLAW + 2 dency in the form of a continuous function expressed 0.0433843·ρb·SPLAW) by a non-linear regression formula: where: θ − θ r – bulk density, (Mg m–3), θ h( ) = θ + s r b r n m –3 +1( | ⋅α h | ) rp – specific density (Mg m ); where: PIA – sand fraction contents for equivalent 3 –3 diamters 1–0.1 mm (%); θs – saturated moisture content [cm cm ], 3 –3 SPLAW – content of particles smaller than θr – residual moisture content [cm cm ], h – soil matrix potential [cm], 0.02 mm (%). α, n, m = 1 – 1/n – parameters of pF curve (cm–1), (−) respectively. Assessment of the presented methods in terms of the possibility of applying them to calculate the water retention of alluvial soils in ¯u³awy Wiœlane was carried The values of θs as well as α and n can be calculated on the basis of empirical relationships provided by out assuming the total amount of water available to Wösten et al. (1999). Varallyay and Mironienko plants as a criterion (total available water – TAW), (Varallyay and Mironienko 1979, Varallyay et al. comprising the difference between soil moisture content 1982) present the water retention characteristics of at vales of pF=2.0 and pF=4.2. Based on the dataset soil in the form of a discontinuous function expressed of alluvial soils in the area of ¯u³awy, the statistical by the general formula: relationships between measured and calculated values for individual models were analysed. The studied θ = b + b ⋅⋅⋅x + b ⋅⋅⋅x + b ⋅⋅⋅x ⋅⋅⋅ x + b ⋅⋅⋅x 2 + b ⋅⋅⋅x 2 dataset originates from 19 soil profiles of alluvial soils pF 0 1 1 2 2 3 1 2 4 1 5 2 and covers 122 soil samples taken from various horizons. where: The undisturbed, standard (100 cm3) soil samples θpF – soil moisture content for a respective value of were collected in three replicates for determination the pF indicator, of soil water retention characteristic. Additionally the b0, b1, b2, b3, b4, b5 – constant number coefficients disturbed samples (bags) were collected for measure for respective pF indicator and given soil texture specific bulk density, particle size distributions and classes, x1, x2 – variable coefficients indicating loss-on-ignition, which represents soil organic matter. respective soil texture classes or bulk density. The analyses of soil particle size distribution were The Varallyay and Mironienko’s method allows conducted by Casagrande in Prószyñski modification for calculating soil moisture content for 9 characteristic areometric method and the soil textural classes were values of the matrix potential on the basis of soil classified according to the previous Polish Society of texture classes and bulk density of soil for distinguished Soil Science (Polish Soil Classification, 1989) standard. soil types. Pedotransfer functions for estimating water retention of alluvial soils 5 The retention curves were measured in the laboratory The coefficient of random variation V indicates using reference methods (Klute 1986). The moisture what of the average level of the modelled phenome- content values in the range from 0 to 2 were determined non the root mean square error comprises and is on a sand table, whereas the amounts of water at the pF: expressed by the formula: 2.7, 3.4 and 4.2 were measured in pressure chambers. S Assessment of the possibilities of applying the V = analysed models to indicate total available water was y carried out using regression analysis.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages8 Page
-
File Size-