Laplace Transform Associated with the Weierstrass Transform

Laplace Transform Associated with the Weierstrass Transform

International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 618 ISSN 2229-5518 Laplace transform associated with the Weierstrass transform Dr. P.A. Gulhane and S.S. Mathurkar Dept. Of Mathematics, Govt. College of Engineering, Amravati, (M.S), India [email protected] , [email protected] Abstract: An elegant expression is obtained for the Laplace-Weierstrass transform LW of the function in terms of their existence. It is also shown , how the main result can be extended to hold for the LW transform of several functions. Keywords: Transform,Laplace Transform,Weierstrass Transform, Laplace-Weierstrass transform, Generalized Function, Existence theorem,Multiplication Theorem. 1. Introduction: ∞ 2 In this paper we have introduced the 1 −−()xy /4 F() x= ∫ f() y e dy (1.2) concept of LW transform which has use in 4π −∞ several fields. The basic idea behind any transform is that the given problem can be where f() y is a suitably restricted conventional solved more readilyIJSER in the transform domain. function on − ∞ <y < ∞ and x is a complex The method is especially attractive in the linear variable. mathematical models for physical systems such Our purpose in this work is to define as a spring/mass system or a series electrical and study the Laplace transform associated with circuit which involve discontinuous functions. the Weierstrass transform. The distributional Laplace transform is This transform is defined by defined as −st ∞ ∞ ()x− y 2 Fs()()= ft, e (1.1) 1 −st − F( s, x )= LW {f ( t, y )}= ∫∫ f() t, y e4 dy dt The conventional Weierstrass transform 4π 0 0 is defined by ( 1.3) 2. The Testing Function Space LWa,b: IJSER © 2013 http://www.ijser.org International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 619 ISSN 2229-5518 Let a and b be fixed numbers in , let ⇒ f is R-integrable over any finite interval in 1 ≥ f() t, y variable in , and let ha, b () t, y 푅denote the range ()t, y 0 . 1 ()x− y 2 the function: 푅 −st − ⇒ e4 f() t, y is R-integrable over any , < < 0 −풂풚 , ( , ) = (2.1) ퟐ finite interval in the range ()t, y ≥ 0 . , 0 < 풂 풃 풆−풃풚 −∞ 푦 풉 풕 풚 � ퟐ Now by definition of LW transform , 풆 ≤ 푦 ∞ 2 LWa,b as the linear space of all complex valued ∞∞ ()xy− 1 −−st = 4 smooth functions φ ()t, y on 0 <t < ∞ , LW{} f() t, y ∫∫f() t, y e dy dt (3.1) 4π 00 − ∞ <y < ∞ such that for each p, q = 0, 1, 2, - 2 2 - - ∞ ∞ y ()x− y 1 −st − ≤ M' eat e4t0 e4 dy dt π ∫∫ y2 0 0 at+ p+ q 4 2 γa,,, b p q φ()t, y= sup e ha, b ()() t,, y Dφ t y < ∞ −x 0<t <∞ 4 0<y <∞ − M' e ≤ (2.2) ()s− a x π The space LWa,b is complete and a −x2 Frechet space. This topology is generated by the Me 4 ≤ where- MM'= total families of countably multinorms space xπ () s− a given by (2.2). −x 2 Me 4 But is finite quantity. xπ () s− a 3. Existence TheoremIJSER for LW Transform: ∴ LW{f ( t, y )} exists provided, s > a and x > 0. If f() t, y is a function which is piecewise continuous on every finite interval in 4. Theorem: If LW{f ( t,, y )}= F ( s x ) then the range ()t, y ≥ 0 and satisfies n 2 n d y i)LW tn f() t , y =() − 1F() s , x 4t {} n f() t,' y≤ M eat e 0 . For all ()t, y ≥ 0 and for ds and some constant a, t0 and M ' , then the LW n n n n d transform of f() t, y exists for all s> a and ) LWii {()()x− y f t, y }=()() − 1 2F() s , x dxn x > 0 . Proof: It is given that the function f() t, y is Proof: Given that, LW{f ( t,, y )}= F ( s x ) piecewise continuous on every finite interval in i) By definition of LW transform the range ()t, y ≥ 0 . IJSER © 2013 http://www.ijser.org International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 620 ISSN 2229-5518 F s,, x= LW f t y r+1 ()(){} r+1 r+1 d 2 LW t f() t, y =() − 1 F() s, x (4.4) ∞∞ ()xy− {} r+1 1 −−st ds = f() t, y e4 dy dt (4.1) ∫∫ 4π 00 d ⇒ Theorem is true for n = r + 1. F' () sx,,= {} F() sx ds Hence by induction , the theorem is true for all 2 ∞∞ ()xy− d 1 −−st = f() t, y e4 dy dt positive integral values of n. ds π ∫∫ 4 00 ii) Given that, LW{f ( t,, y )}= F ( s x ) (4.2) ∞ ∞ ()x− y 2 −st − 1 4 ∞ ∞ ()x− y 2 F( s, x )= LW {f ( t, y )}= f() t, y e dy dt −st − ∫∫ −1 4 π = ∫∫ t f() t, y e dy dt 4 0 0 4π 0 0 Now, ∞ ∞ ()x− y 2 d d 1 −st − (−1 )F ' ( s , x )= LW {t f ( t, y )} F',() s x = F() s, x = ∫∫ f() t, y e4 dy dt dx dx 4π 0 0 or d (4.5) LW{} t f() t, y=() − 1 F() s , x (4.3) ds −1 = LW {()()x− y f t, y } 2 i.e. the theorem is true for n = 1. Next, let this theorem be true for n = r, then we d have LW{()() x−=− y f t, y } () 1 (2)F() s , x (4.6) r dx r d LW {}tr f() t, y =() − 1[]F() s , x IJSERds r i.e. the theorem is true for n = 1. ()()()−1r Fr s , x = LW {}tr f t, y ∞ ∞ ()x− y 2 Next, let this theorem be true for n = r, then we 1 −st − = ∫∫ tr f() t, y e4 dy dt 4π 0 0 have r On differentiating both sides w. r. t. s we get, r r r d − = − LW {()()x y f t, y } ()() 1 2r F() s , x r r+1 dx ()()−1,F sx r 2 r r d r ∞∞ ()xy− − = − d 1 −−st ()()1 2 r []F() s, x LW {()()x y f t, y } = e4 tr f() t, y dy dt dx ds π ∫∫ 4 00 r+1 r+1 ∞ ∞ ()x− y 2 − − ()()−1,F sx 1 r st = ()()x− y f t, y e4 dy dt 2 ∫∫ ∞∞ ()xy− π 1 −−st 4 0 0 = tr+1 f() t, y e4 dy dt ∫∫ 4π 00 Now differentiating both sides w. r. t. x we get, IJSER © 2013 http://www.ijser.org International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 621 ISSN 2229-5518 r+1 rrd [5] Saitoh S : The Weierstrass Transform and an − ()()12r+1 F() sx , dx Isometry in the Heat Equation Applicable 2 ∞∞ ()xy− d 1 r −−st Anal, (1983) = ()()x− y f t, y e4 dy dt dx π ∫∫ [6] Chelo Ferreira. Jose L. Lopez, 4 00 Approximation of the Poisson Transform for large and small values of −1 r+1 = LW {()()− , ytfyx } 2 the Transformation Parameter, Ramanujan J. LW {()()− r+1 ytfyx } ()()()−= rr ++ 11 r+1 ,21, xsF (2012) DOI 10,1007/11139-012-9438-y (4.7) ⇒ Theorem is true for n = r + 1. Hence by induction ,the theorem is true for all positive integral values of n. 5. Conclusion: In this paper we have introduced LW transform of a function (), ytf and seen how it is exists. Also we have proved another theorem which is useful to solve certain equation. References : IJSER [1] Zemanian A H : Generalized Integral Transformation, Interscience Publishers, New York (1968). [2] Zemanian A H : Distribution Theory and Transform Analysis, McGraw-Hill, New York (1965). [3] Pathak R S : A Representation Theorem for a Class of Stieltjes Transformable Generalized Function (1974). [4] Srivastava H M : The Weierstrass-Laguerre Transform, National Academy of Sciences, Vol 68 , No 3, pp 554-556,(1971) IJSER © 2013 http://www.ijser.org .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us