Harish-Chandra Characters of Some Minimal Representations

Harish-Chandra Characters of Some Minimal Representations

Department of Mathematics Aarhus University Denmark PhD Dissertation Harish-Chandra characters of some minimal representations Adam Ehlers Nyholm Thomsen July 31, 2015 Supervisor Prof. Bent Ørsted Abstract Let G be a simple Lie group of Hermitian type. Let K ⊂ G be a maximal compact subgroup and let H ⊂ K be a Cartan subgroup. Then H is also a Cartan subgroup of G. We denote their Lie algebras by fraktur script i.e. g; k and h. Let Λ be a weight of h then Λ can be decomposed into two parameters Λ0 and λ such that Λ0 is a weight of [k; k] \ h + and λ 2 R. Let ∆ (g; h) be a positive system such that any positive non-compact root is + greater than any compact root, let ∆n be the set of positive non-compact roots. Then set n = ⊕ + g where g is the root space of α in g . α2∆n α α C g Let γ be a dominant integral weight and let L C (γ) be the unique simple quotient of k k U(gC) ⊗k +n F C (γ). Where F C (γ) is the finite dimensional highest-weight representation C g of kC with highest-weight γ. The set of (Λ0; λ) such that L C ((Λ0; λ)) is unitarizable g has been classified, take λ minimal such that L C ((0; λ)) is unitarizable. Then we call g L C ((0; λ)) the minimal holomorphic representation of G and denote it by πMin. This representation integrates to a representation of G. There exists α; β such that 1 K πMinjK = ⊕^ n=0F (α + nβ): + Let Z 2 Z(k) such that α(Z) < 0 for all α 2 ∆n . Then CMin = Cone(Ad(G)Z) is a non- trivial, Ad(G)-invariant, proper convex cone in g such that CMin 6= f0g; g. Furthermore o CMin =6 ;. Then there exists a semigroup ГG(CMin) such that G is a subgroup and o ГG(CMin) is homeomorphic to G × CMin. Inside this semigroup there is an ideal ГG(CMin) o o which is homeomorphic to G×CMin. The ideal ГG(CMin) has a complex manifold structure. o There exists a representation of ГG(CMin) which we will also denote by πMin such that: o 1. For s 2 ГG(CMin) the operator πMin(s) is trace-class and the function s 7! tr πMin(s) is holomorphic. o 2. There exists a sequence sn 2 ГG(CMin) such that sn converges to the identity in ГG(CMin). Furthermore the functions G 3 g 7! tr πMin(gsn) converge to the Harish-Chandra character of πMin in the sense of distributions. o In this thesis we calculate tr πMin(h Exp(iX)) for h 2 H and X 2 h \ CMin. Then for ∗ g = su(p; q); sp(n; R); so (2n) we use this to calculate the Harish-Chandra character of πMin. Furthermore we also calculate the Harish-Chandra character of the odd part of the metaplectic representation in this way. For g = so(2; n) we get a reduced expression for tr πMin(h Exp(iX)) which we use to conjecture a character formula for πMin in this case. Dansk resumé Lad G være en simpel Lie gruppe af Hermitisk type. Lad K ⊂ G være en maksiml kompakt undergruppe og lad H ⊂ K være en Cartanundergruppe. Så er H også en i Cartanundergruppe af G. Vi skriver Liealgebraer med frakturskrift(også kaldet gotiske bogstaver) så g = Lie(G), k = Lie(K), etc. Lad Λ være en vægt for h ⊂ k så kan Λ dekomponeres i to parametre Λ0 og λ så Λ0 er en vægt for [k; k] \ h ⊂ [k; k] og λ 2 R. Lad ∆+(g; h) være et positivt system som opfylder at enhver positiv ikke-kompakt rod er + større end enhver kompakt rod. Lad ∆n være mængden af positive ikke-kompakte rødder. Så lader vi n = ⊕ + g hvor g er rodrummet i g tilhørende α. α2∆n α α C g Lad γ være en dominant heltallig vægt og lad L C (γ) være den entydige simple kvo- k k tient af modulet U(gC) ⊗k +n F C (γ). Hvor F C (γ) er den endeligt dimensionelle hø- C g jestevægtrepræsentation af kC med højeste vægt γ. Mængden af par (Λ0; λ) så L C ((Λ0; λ)) kan gøres til en unitær repræsentation er tidligere blevet bestemt. Lad λ være mini- g g mal således at L C ((0; λ)) kan gøres unitær. Vi betegner L C ((0; λ)) med dette λ som den minimale holomorfe repræsentation og skriver πMin. Så giver πMin anledning til en repræsentation af G. Der findes α og β således at 1 K πMinjK = ⊕^ n=0F (α + nβ): + Lad Z 2 Z(k) og vælg Z så det opfylder α(Z) < 0 for alle α 2 ∆n . Sæt CMin := Cone(Ad(G)Z) så er CMin en Ad(G)-invariant konveks kegle i g, som opfylder at CMin 6= o f0g; g. Ydermore da g er simpel er CMin 6= ;. Så eksisterer der en semigruppe ГG(CMin) så G er en undergruppe og ГG(CMin) er homøomorf til G × CMin. I denne semigruppe findes o et semigruppeideal ГG(CMin), som under den samme homøomorfi som før bliver sendt til o o G × CMin. Idealet ГG(CMin) er en kompleksmangfoldighed. Der findes en repræsentation o af ГG(CMin) som vi også kalder πMin som opfylder o 1. Lad s 2 ГG(CMin) så er operatoren πMin(s) sporklasse og funktionen s 7! tr πMin(s) er holomorf. o o 2. Der findes en følge sn 2 ГG(CMin), så sn konvergerer til identiteten i ГG(CMin). Ydermere konvergerer funktionerne G 3 g 7! tr πMin(gsn) til Harish-Chandra karakteren af πMin. Denne konvergens er i distributionsforstand. o I denne afhandling beregner vi tr πMin(h Exp(iX)) når h 2 H og X 2 h \ CMin.I ∗ tilfældene g = su(p; q); sp(n; R) og so (2n) bruger vi dette til at beregne en formel for Harish-Chandra karakteren af πMin. Vi beregner også Harish-Chandra karakteren af den ulige metaplektiske repræsentation med disse metoder. I tilfældet so(2; 2n) beregner vi et reduceret udtryk for tr πMin(h Exp(iX)) som vi bruger til at opstille en formodning om Harish-Chandra karakteren. ii Acknowledgments First of all I would like to thank my supervisor Professor Bent Ørsted for showing me a beautiful and complex area of mathematics and for suggesting a problem and an approach that is imminently suitable for a graduate thesis. I would like to thank him for his unending patience and tireless support even when I have taxed it beyond what any reasonable person could expect. I owe a great debt of gratitude to Professor Jorge Vargas for patiently and repeatedly explaining many fundamental things to me, and for supporting my progress from half-way across the globe. If there are any insights in this thesis they can ultimately be traced to one them. I want to thank Professor Toshiyuki Kobayashi for letting me visit and experience the mathematical community at Tokyo University and in Japan. I also want to thank Dr. Jan Möllers for always answering my e-mails and questions promptly. I would like to thank my family, friends and the community of students and young mathematicians at Aarhus University. Without you I would have given up much earlier in the process, your unwavering and kind support has been invaluable. iii Contents 1 Introduction 1 1.1 Harish-Chandra characters . 1 1.2 Minimal representations . 2 1.3 Ol’shanski˘ısemigroups . 3 1.4 Results . 4 1.5 Structure of this thesis . 6 1.6 Deficiencies and outlook . 7 1.7 Notation . 8 2 Characters on Ol’shanski˘ı semigroups 9 2.1 Setup . 9 2.2 Complex Lie groups . 11 2.3 Ad(G)-invariant cones . 12 2.4 Ol’shanski˘ısemigroups . 13 2.5 Representation theory of Ol’shanski˘ısemigroups . 19 2.6 Pencil of K-types . 21 2.7 SL(2; R) considerations . 24 o 2.7.1 A curve in ГSL(2;R)(CMin) ....................... 25 2.7.2 Lifts to SL(2f ; R) ............................ 26 2.8 Characters on the Ol’shanski˘ısemigroups . 28 2.8.1 Cayley transforms . 29 2.8.2 Uniformity of characters . 35 3 Minimal Representations 39 3.1 Minimal holomorphic representations . 39 3.2 Technicalities . 41 3.3 sp(n; R) ..................................... 45 3.3.1 Some structure theory . 45 3.3.2 The metaplectic representation . 51 3.3.3 The character on the compact Cartan subgroup . 52 3.3.4 The character function . 58 3.4 su(p; q) ...................................... 62 3.4.1 Structure and realization . 62 3.4.2 The minimal representation . 68 3.5 so∗(2n) ..................................... 70 3.5.1 Structure and realization . 71 3.5.2 Minimal representation . 76 v Contents 3.6 so(2; 2n) ..................................... 79 3.6.1 Structure and realization . 80 3.6.2 Minimal representations . 83 3.6.3 Combinatorics . 84 3.6.4 The character . 87 3.7 so(2; 2n + 1) ................................... 92 3.7.1 Structure and realization . 92 3.7.2 Combinatorics . 95 Bibliography 99 vi 1 Introduction The aim of this thesis is to calculate the Harish-Chandra characters for minimal represen- tations of simple Lie groups of Hermitian type. In the thesis we introduce some general results that we hope should be applicable to the calculation of characters of highest-weight representations of Lie groups of Hermitian type. However they rely on an assumption of continuous extension of the character on the Ol’shanski˘ısemigroup to the group.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    111 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us