Quark Modelmodel

Quark Modelmodel

QuarkQuark ModelModel OutlineOutline Hadrons Hadrons known in 1960 Isospin, Strangeness Quark Model 3 Flavours u, d, s Mesons Pseudoscalar and vector mesons Baryons Decuplet, octet Hadron Masses Spin-spin coupling Heavy Quarks Charm, bottom, Heavy quark Mesons Top quark Motivation for Quark Model Particle “Zoo” proliferates “ … the finder of a new particle used to be rewarded by a Nobel prize, but such a discovery ought to be punished by a $10000 fine” Lamb, 1955 Nuclear and Particle Physics Franz Muheim 1 IsospinIsospin Nucleons Proton and neutron have almost equal mass Strong nuclear force is charge independent Vpp≈ Vpn ≈ Vnn Isospin p and n form part of single entity with isospin ½ analogous to ↑ and ↓ of spin ½ Isospin I is conserved in strong interactions Addition by rules of angular momentum Isospin Multiplets Useful for classification of hadrons, see slide 1 2I+1 states in a isospin muliplet |I, I3 > Quark Model Gives natural explanation for Isospin I = 1 (n − n + n − n ) 3 2 u d d u ni number of i quarks Isospin works well Masses of u and d quark are almost equal Nuclear and Particle Physics Franz Muheim 2 IsospinIsospin ConservationConservation Conservation Law Isospin I is conserved in strong interactions Allows to calculate ratios of cross sections and branching fractions in strong interactions Delta(1232) Resonance Production Mass 1232 MeV π + p → ∆++ → π + p Width 120 MeV π − p → ∆0 → π − p π − p → ∆0 → π 0n Isospin addition + 1 1 3 3 π p : 1,1 2 , 2 = 2 , 2 − 1 1 1 3 1 2 1 1 π p : 1,−1 2 , 2 = 3 2 ,− 2 − 3 2 ,− 2 0 1 1 2 3 1 1 1 1 π n : 1,0 2 ,− 2 = 3 2 ,− 2 + 3 2 ,− 2 3 3 Matrix element M 3 = 2 H 3 2 1 1 depends on I, not I3 M1 = 2 H1 2 + ++ + M(π p → ∆ → π p) = M 3 − 0 − 1 2 M ()π p → ∆ → π p = 3 M 3 + 3 M1 Cross sections − 0 0 2 2 M()π p → ∆ → π n = 3 M 3 − 3 M1 2 σ ∝ M σ (π + p → ∆++ → π + p)≈ 200 mb ≈ 9x In agreement with σ ()π − p → ∆0 → all ≈ 70 mb ≈ 3x I=3/2 Isospin prediction σ ()π − p → ∆0 → π − p ≈ 23 mb ≈ 1x Nuclear and Particle Physics Franz Muheim 3 StrangenessStrangeness Strange Particles Discovered in 1947 Rochester and Butler V, “fork”, and K, “kink” Production of V(K0, Λ) and K± π − p → K 0Λ τ = O(10−23 s) via strong interaction, 0 + − −10 K → π π τ 0 = 0.89×10 s weak decay K Λ → π − p τ = 2.63×10−10 s Associated Production Λ Strange particles produced in pairs Pais Strangeness S Additive quantum number Gell-Mann Nishijima Conserved in strong and electromagnetic interactions Violated in weak decays Non-zero for Kaons S = 0 : π , p, n, ∆, ... S = 1: K + , K 0 and hyperons S = −1: K − , K 0 , Λ, Σ, ... S = −2 : Ξ Naturally explained in quark model S = ns − ns Nuclear and Particle Physics Franz Muheim 4 QuarkQuark ModelModel 33 QuarkQuark FlavoursFlavours u,u, d,d, ss 1964 - introduced by Gell-Mann & Zweig Quark Charge Isospin Strange- Q[e] |I, I3 > ness S up (u) +2/3 |½, +½ › 0 Gell-Mann down (d) -1/3 |½, -½ › 0 strange (s) -1/3 |0,0› -1 Zweig Charge, Isospin and Strangeness Additive quark quantum numbers are related Q = I3 + ½(S + B) not all independent Gell-Mann Nishijima predates quark model valid also for hadrons Baryon number B quarks B = +1/3 anti-quarks B = -1/3 Hypercharge Y = S + B is useful quantum number Quark model gives natural explanation Nuclearfor and ParticleIsospin Physicsand Strange Franzness Muheim 5 MesonsMesons Bound q q States Zero net colour charge Zero net baryon number B = +1/3 +(-1/3) = 0 Angular Momentum L For lightest mesons Ground state L = 0 between quarks Parity P Intrinsic quantum number of quarks and leptons P=+1 for fermions P=-1 for anti-fermions L P()qq = Pq Pq ()− 1 = ()+ 1 (− 1)(− 1)L = −1 for L = 0 Total Angular Momentum J r r J = L + S include quark spins S = 0 qq spins anti-aligned ↑↓ or ↓↑ Î JP = 0- Pseudo-scalar mesons S = 1 qq spins aligned ↑↑ or ↓↓ Î JP = 1- Vector mesons Quark flavours ud , us, du, ds, su, sd non-zero flavour states uu, dd , ss zero net flavour states have identical additive quantum numbers Physical states are mixtures Nuclear and Particle Physics Franz Muheim 6 MesonsMesons Pseudoscalar Mesons JP = 0- Kaons: K+, K0, anti-K0, K- Pions: π+, π0, π- Etas: η, η’ Strangeness S Isospin I3 Vector Mesons JP = 1- Kstar: K*+, K*0, anti-K*0, K*- rho: ρ+, ρ0, ρ- omega/phi: ω, φ Strangeness S Isospin I3 Nuclear and Particle Physics Franz Muheim 7 BaryonBaryon DecupletDecuplet Baryon Wavefunction Ψ(total) = Ψ(space) Ψ(spin) Ψ(flavour) Ψ(colour) Space symmetric - L = 0 Flavour symmetric, e.g. uuu, (udu+duu+uud)/√3 Spin symmetric all 3 quarks aligned → S = 3/2 Colour antisymmetric Total antisymmetric - obeys Pauli Exclusion Principle Baryon Decuplet JP = 3/2+ <Mass> Delta 1232 MeV uuu Sigma* 1385 MeV Cascade* 1533 MeV Strangeness S Omega- 1672 MeV Isospin Quark model predicted unobserved state Ω- (sss) Nuclear and Particle Physics Franz Muheim 8 BaryonBaryon OctetOctet Baryon Wavefunction Ψ(space) symmetric (L = 0) Ψ(colour) antisymmetric Mixed symmetric Ψ(spin, flavour) Flavour mixed symmetric: e.g. (ud - du) u/√2 Spin as flavour: e.g. (↑↓ - ↑↓) ↑/√2 Spin-flavour e.g. (u↑d↓ -d↑u↓ -u↓d↑ + d↓u↑) u↑/√6 Symmetrisation by cyclic permutations Ψ(proton, s=+½) = ( 2u↑u↑d↓ -u↑u↓d↑-u↓u↑d↑ +2d↓u↑u↑ -d↑u↑u↓-d↑u↓u↑ +2u↑d↑u↓ -u↑d↓u↑-u↓d↑u↑) /√18 Baryon Octet JP = ½+ <Mass> p,n 938.9 MeV Sigma 1193 MeV Lambda 1116 MeV Strangeness S Cascade 1318 MeV (Xi) Isospin Lightest baryons stable or long-lived Antibaryons ()p, n, ... also form Octet and Decuplet Nuclear and Particle Physics Franz Muheim 9 DiscoveryDiscovery ofof ΩΩ- Ω- (sss) Hyperon Hyperon - baryon with at least one s quark Quark model predicted existence and mass Missing member of baryon decuplet JP = 3/2+ discovered 1964 at Brookhaven K- beam onto hydrogen target Bubble Chamber detector K − + p → .Ω − + K − + K 0 0 + a Ξ +π 0 0 a Λ + π a γ + γ + − a e e + − a e e − a π p Nuclear and Particle Physics Franz Muheim 10 HadronHadron MassesMasses Quark Masses u, d & s quark masses light at short distance 2 2 q > 1 GeV mu < md ~ 5 MeV ms ~ 100 MeV Constituent mass is relevant for quark model 2 2 q < 1 GeV mu = md ~ 300 MeV ms ~ 500 MeV Meson Masses m(K) > m(π) due to ms > mu, md m(ρ) > m(π) same quark content e.g. ρ+, π+: (u-dbar) Mass difference is due to quark spins Chromomagnetic Mass Splitting Spin-spin coupling of quarks S1 = S2 = 1/2 analogous to hyperfine splitting in el. mag. interaction r r r r r Sr ⋅ S S ⋅ S S ⋅ S1 2 ∆E ∝ α 1 2 mm()qq ==mm+1 +mm+2A+ A1 2 S () 1 2 m m m1m2 m1m2 1 2 r r 1 r 2 r 2 r 2 1 S1 ⋅ S2 = ()S − S1 − S2 = ()S(S + 1) − S1 (S1 + 1) − S2 (S2 + 1) 2 2 ⎧ 3 1 ⎪ 1− = S = 1 = 4 4 ⎨ 3 3 Mass [MeV] ⎪ 0 − = − S = 0 ⎩ 4 4 Meson Prediction Experiment Meson Masses π 140 138 mu = md = 310 MeV K 484 496 ms = 483 MeV 2 ρ 780 770 A = (2mu) · 160 MeV Excellent agreement ω 780 782 What about eta(‘)? K* 896 894 Nuclear and Particle Physicsφ Franz Muheim1032 1019 11 HeavyHeavy QuarksQuarks Charm and bottom quarks Charmonium (c-cbar) --- see QCD lecture 1977 Discovery of Upsilon States Interpretation is Bottomonium (b-bar) Spectroscopy Charmonium and Upsilon mc ~ 1.1 … 1.4 GeV mb ~ 4.1 … 4.5 GeV Heavy-light Mesons and Baryons Charmed (c-quark) hadrons P − 0 + + J = 0 D = cu, D = cd , Ds = cs, P − *0 *+ *+ J = 1 D = cu, D = cd , Ds = cs, 1 − J P = Λ+ = cud 2 c Bottom-quark hadrons P − + 0 0 J = 0 B = ub, B = db, Bs = sb, P − *+ *0 *0 J = 1 B = ub, B = db, Bs = sb, 1 − J P = Λ0 = bud 2 b Top quark Decays before forming bound states Nuclearm andt ~ Particle 174 PhysicsGeV discovered Franz Muheim in 1995 at Fermilab 12.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    12 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us