Theoretical Computer Science Cheat Sheet Definitions Series F(N) = O(G

Theoretical Computer Science Cheat Sheet Definitions Series F(N) = O(G

Theoretical Computer Science Cheat Sheet Definitions Series f(n)= O(g(n)) iff positive c,n0 such that n n n 2 2 ∃ n(n + 1) 2 n(n + 1)(2n + 1) 3 n (n + 1) 0 f(n) cg(n) n n0. i = , i = , i = . ≤ ≤ ∀ ≥ 2 6 4 i=1 i=1 i=1 f(n)=Ω(g(n)) iff positive c,n such that X X X 0 In general: f(n∃) cg(n) 0 n n . ≥ ≥ ∀ ≥ 0 n n m 1 m+1 m+1 m+1 m f(n)=Θ(g(n)) iff f(n) = O(g(n)) and i = (n + 1) 1 (i + 1) i (m + 1)i m +1 − − − − i=1 i=1 f(n)=Ω(g(n)). X X n 1 m − m 1 m +1 m+1 k f(n)= o(g(n)) iff limn f(n)/g(n) = 0. i = B n − . →∞ m +1 k k i=1 k=0 lim an = a iff ǫ > 0, n0 such that X X n →∞ ∀ ∃ Geometric series: an a <ǫ, n n0. n | − | ∀ ≥ cn+1 1 ∞ 1 ∞ c R ci = − , c =1, ci = , ci = , c < 1, sup S least b such that b s, c 1 6 1 c 1 c | | s S.∈ ≥ i=0 − i=0 − i=1 − Xn X X ∀ ∈ ncn+2 (n + 1)cn+1 + c ∞ c inf S greatest b R such that b ici = − , c =1, ici = , c < 1. ∈ ≤ (c 1)2 6 (1 c)2 | | s, s S. i=0 i=0 ∀ ∈ X − X − N Harmonic series: lim inf an lim inf ai i n,i . n n n n { | ≥ ∈ } 1 n(n + 1) n(n 1) →∞ →∞ H = , iH = H − . N n i i 2 n − 4 lim sup an lim sup ai i n,i . i=1 i=1 n n { | ≥ ∈ } →∞ n X Xn →∞ i n +1 1 n Combinations: Size k sub- H = (n + 1)H n, H = H . k i n − m i m +1 n+1 − m +1 sets of a size n set. i=1 i=1 X X n n k Stirling numbers (1st kind): n n! n n n n Arrangements of an n ele- 1. = , 2. =2 , 3. = , k (n k)!k! k k n k ment set into k cycles. − k=0 − n n n 1 X n n 1 n 1 n 4. = − , 5. = − + − , Stirling numbers (2nd kind): k k k 1 k k k 1 k − − Partitions of an n element n m n n k n r + k r + n +1 set into k non-empty sets. 6. = − , 7. = , m k k m k k n n − k=0 1st order Eulerian numbers: n Xn k k n +1 r s r + s Permutations π π ...π on 8. = , 9. = , 1 2 n m m +1 k n k n 1, 2,...,n with k ascents. k=0 k=0 − { } X X n k k n 1 n n n 2nd order Eulerian numbers. 10. = ( 1) − − , 11. = =1, k k − k 1 n Cn Catalan Numbers: Binary n n 1 n n 1 n 1 trees with n + 1 vertices. 12. =2 − 1, 13. = k − + − , 2 − k k k 1 − n n n n n 14. = (n 1)!, 15. = (n 1)!Hn 1, 16. =1, 17. , 1 − 2 − − n k ≥ k n n 1 n 1 n n n n n 1 2n 18. = (n 1) − + − , 19. = = , 20. = n!, 21. C = , k − k k 1 n 1 n 1 2 k n n +1 n − − − k=0 n n n n n X n 1 n 1 22. = =1, 23. = , 24. = (k + 1) − + (n k) − , 0 n 1 k n 1 k k k − k 1 − − − − 0 1 if k = 0, n n n +1 25. = 26. =2n n 1, 27. =3n (n + 1)2n + , k 0 otherwise 1 − − 2 − 2 n n m n n x + k n n +1 n n k 28. xn = , 29. = (m +1 k)n( 1)k, 30. m! = , k n m k − − m k n m k=0 k=0 k=0 X n X X − n n n k n k m n n 31. = − ( 1) − − k!, 32. =1, 33. =0 for n =0, m k m − 0 n 6 k=0 X n n n 1 n 1 n (2n)n 34. = (k + 1) − + (2n 1 k) − , 35. = , k k − − k 1 k 2n k=0 n − nX x n x + n 1 k n +1 n k k n k 36. = − − , 37. = = (m + 1) − , x n k 2n m +1 k m m − Xk=0 Xk kX=0 Theoretical Computer Science Cheat Sheet Identities Cont. Trees n n n n +1 n k k n k 1 k x n x + k Every tree with n 38. = = n − = n! , 39. = , m +1 k m m k! m x n k 2n vertices has n 1 k k=0 k=0 k=0 − X X X − X edges. n n k +1 n k n n +1 k m k 40. = ( 1) − , 41. = ( 1) − , m k m +1 − m k +1 m − Kraft inequal- k k X m X m ity: If the depths m + n +1 n + k m + n +1 n + k 42. = k , 43. = k(n + k) , of the leaves of m k m k a binary tree are k=0 k=0 X X d ,...,d : n n +1 k m k n n +1 k m k 1 n 44. = ( 1) − , 45. (n m)! = ( 1) − , for n m, n m k +1 m − − m k +1 m − ≥ di k k 2− 1, X X ≤ n m n m + n m + k n m n m + n m + k i=1 46. = − , 47. = − , X n m m + k n + k k n m m + k n + k k − k − k and equality holds n ℓ +Xm k n k n n Xℓ + m k n k n only if every in- 48. = − , 49. = − . ℓ + m ℓ ℓ m k ℓ + m ℓ ℓ m k ternal node has 2 Xk Xk sons. Recurrences Master method: Generating functions: T (n)= aT (n/b)+ f(n), a 1,b> 1 1 T (n) 3T (n/2) = n 1. Multiply both sides of the equa- ≥ − 3 T (n/2) 3T (n/4) = n/2 tion by xi. If ǫ> 0 such that f(n)= O(nlogb a ǫ) − − 2. Sum both sides over all i for then∃ . which the equation is valid. T (n)=Θ(nlogb a). log n 1 3 2 − T (2) 3T (1) = 2 3. Choose a generating function logb a − i If f(n)=Θ(n ) then G(x). Usually G(x)= i∞=0 x gi. T (n)=Θ(nlogb a log n). Let m = log 2 n. Summing the left side 3. Rewrite the equation in terms of 2 m m P we get T (n) 3 T (1) = T (n) 3 = the generating function G(x). If ǫ> 0 such that f(n)=Ω(nlogb a+ǫ), T (n) nk where− k = log 3 −1.58496. ∃ − 2 ≈ 4. Solve for G(x). and c < 1 such that af(n/b) cf(n) Summing the right side we get i ∃ ≤ m 1 m 1 5. The coefficient of x in G(x) is gi. for large n, then − − n i 3 i Example: T (n)=Θ(f(n)). 3 = n . 2i 2 i=0 i=0 gi+1 =2gi +1, g0 =0. Substitution (example): Consider the X X 3 Multiply and sum: following recurrence Let c = 2 . Then we have i m 1 i i i 2 2 − m gi+1x = 2gix + x . Ti+1 =2 Ti , T1 =2. i c 1 · n c = n − i 0 i 0 i 0 c 1 X≥ X≥ X≥ Note that Ti is always a power of two. i=0 − X We choose G(x)= xig . Rewrite log2 n i 0 i Let ti = log2 Ti. Then we have =2n(c 1) ≥ i − in terms of G(x): ti+1 =2 +2ti, t1 =1. (k 1) logc n P =2n(c − 1) G(x) g0 i i − − =2G(x)+ x . Let ui = ti/2 . Dividing both sides of k x =2n 2n, i 0 the previous equation by 2i+1 we get − X≥ i k ti+1 2 ti and so T (n)=3n 2n. Full history re- Simplify: i+1 = i+1 + i . − G(x) 1 2 2 2 currences can often be changed to limited =2G(x)+ . x 1 x Substituting we find history ones (example): Consider i 1 − 1 1 − ui+1 = + ui, u1 = , Solve for G(x): 2 2 Ti =1+ Tj, T0 =1. x G(x)= . which is simply ui = i/2. So we find j=0 (1 x)(1 2x) − X i2i 1 − − that Ti has the closed form Ti =2 . Note that i Expand this using partial fractions: Summing factors (example): Consider 2 1 the following recurrence Ti+1 =1+ Tj. G(x)= x j=0 1 2x − 1 x T (n)=3T (n/2)+ n, T (1) = 1. X − − Subtracting we find i i i Rewrite so that all terms involving T i i 1 = x 2 2 x x − − are on the left side T T =1+ T 1 T i 0 i 0 i+1 − i j − − j X≥ X≥ T (n) 3T (n/2) = n. j=0 j=0 i+1 i+1 − X X = (2 1)x . − Now expand the recurrence, and choose = Ti. i 0 X≥ a factor which makes the left side “tele- And so T =2T =2i+1.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us