Characterization of Impurities in Different Ferroalloys and Their Effects on the Inclusion Characteristics of Steels

Characterization of Impurities in Different Ferroalloys and Their Effects on the Inclusion Characteristics of Steels

kth royal institute of technology Doctoral Thesis in Materials Science and Engineering Characterization of Impurities in Different Ferroalloys and Their Effects on the Inclusion Characteristics of Steels YONG WANG Stockholm, Sweden 2021 Characterization of Impurities in Different Ferroalloys and Their Effects on the Inclusion Characteristics of Steels YONG WANG Academic Dissertation which, with due permission of the KTH Royal Institute of Technology, is submitted for public defence for the Degree of Doctor of Philosophy on Thursday, 3rd June, 2021, at 10:00 a.m. in Green Room, Osquars backe 31, Södra tornet, plan 4, Stocklholm. Doctoral Thesis in Materials Science and Engineering KTH Royal Institute of Technology Stockholm, Sweden 2021 © Yong Wang ISBN: 978-91-7873-895-3 TRITA-ITM-AVL 2021:26 Printed by: Universitetsservice US-AB, Sweden 2021 To my beloved family 送给我挚爱的家人 Abstract Ferroalloys have become increasingly important due to their indispensable role in steelmaking. As the performance requirements of steel materials increase, it is necessary to have a better understanding of the impact of impurities in ferroalloys on the steel cleanliness. The quality of the ferroalloy will directly affect the quality of the steel. This is especially important when ferroalloys are added during the late stage of the ladle metallurgy process. The goal of the present work is to gain knowledge about various ferroalloy impurities added in the steel production process and to study the influence of ferroalloy impurities on inclusions in the steel. The research work is divided into four main parts. ` In the first part, previous works on impurities present in different ferroalloys as well as how these impurities can influence the steel cleanliness have been reviewed. The applications of different ferroalloys and their production trends were discussed. The possible harmful inclusions in different ferroalloys were identified. The results showed that: 1) MnO, MnS and MnO-SiO2-MnS inclusions from FeMn and SiMn alloys have a temporary influence on the steel quality; 2) The effect of trace elements, such as Al, Ca contents, should be considered before the addition of FeSi alloys to steel. Also, Al2O3 inclusions and relatively high Al contents are commonly found in FeTi, FeNb and FeV alloys due to their production process. This information should be paid more attention to when these ferroalloys are added to steel; and 3) specific alloys containing REM oxides, Cr(C,N), Cr-Mn-O, Al2O3, Al-Ti-O, TiS and Ti(C,N) have not been studied enough to enable a judgement on their influence on the steel cleanliness. Moreover, the effect of large size SiO2 inclusions in FeSi and FeMo alloys on the steel cleanliness is not fully understood. In the second part, the impurity assessment of 10 different ferroalloys (FeSi, FeCr, FeMo, FeV, FeTi, FeNb, FeW, FeB, MnN, FeCrN) was carried out by using various characterization techniques. The inclusions obtained in these ferroalloys were mostly silica or alumina; and or the oxides of the base elements. Also, the main elemental impurities and inclusions were closely related to their manufacturing route. The advantages and disadvantages of different methods were compared, and the detection technology of ferroalloy inclusions was optimized. The results showed that the traditional two-dimensional method on a polished surface can not always be applied for the investigation of inclusions in some specific ferroalloys. Moreover, the investigations of inclusions on metal surface after electrolytic extraction showed a big potential to use to detect larger sized inclusions. The results on both the film filter and metal surface should be grouped together to obtain more comprehensive information on the inclusion characteristics. Among these ferroalloys, FeCr and FeNb were found to be relatively less studied ferroalloys. Thus, they were selected for further studies. In the third part, the early melting behaviours of FeNb, HCFeCr and LCFeCr alloys during additions in liquid iron was studied. The experiments were carried out by using the "liquid metal suction" technique. Here, the ferroalloy was contacted with liquid iron for a predetermined time and then quenched. The obtained samples were further studied to determine the microstructure and the formation of inclusions. It was found that the mutual diffusion between solid ferroalloy and liquid iron formed a reaction zone. Also, the initial dissolution mechanism of FeNbs alloy in liquid iron was proposed, and the mechanism was I controlled by diffusion. The TiOx inclusions in FeNb alloy will partially or completely be reduced due to a reaction with Nb in the reaction zone. The original stable inclusions, such as Al2O3 in FeNb alloys and MnCr2O4 inclusions in LCFeCr alloys can move in this zone and keep their original forms without experiencing any changes. Under the same conditions, the melting speed of LCFeCr alloy is faster than that of HCFeCr alloy. The addition of FeNb and FeCr alloys in steel certainly introduces inclusions to steel. In the fourth part, the influence of the addition of LCFeCr alloys on the inclusions in Ti- containing ferritic stainless steel was studied on a laboratory scale. It was found that the MnCr2O4 inclusions in the LCFeCr alloy would react with TiN and dissolved Ti in the Ti- containing steel to form TiOx-Cr2O3 system inclusions. In addition, the removal effect of slag on such inclusions was also studied. The results found that the slag addition can modify the TiOx-rich inclusions, but that the Ti content in the steel was significantly reduced. Therefore, a proper amount of TiO2 content should be added into the slag to get a low Ti loss in the steel melt, which should be studied further. Therefore, the composition of the steel directly affects the behaviour of the inclusions from ferroalloys in steel. Key words: ferroalloys, electrolytic extraction, metal surface, non-metallic inclusions, steel cleanliness, computational thermodynamics. II Sammanfattning Ferrolegeringar har blivit allt viktigare på grund av deras oumbärliga roll i ståltillverkning. När prestandakraven för stålmaterial ökar är det nödvändigt att ha en större förståelse för effekterna av föroreningar i ferrolegeringar på stålets renhet. Ferrolegeringens kvalitet kommer att direkt påverka stålets kvalitet. Detta är särskilt viktigt när ferrolegeringar tillsätts i slutet av skänkmetallurgiprocessen. Målet med det här arbetet är att få kunskap om olika orenheter i ferrolegeringar som tillsätts i stålproduktionsprocessen och att studera hur orenheter i ferrolegeringar påverkar inneslutningar i stålet. Arbetet är indelat i fyra delar. I den första delen har tidigare forskning om orenheter som finns i olika järnlegeringar samt hur dessa orenheter kan påverka stålets renhet granskats. Tillämpningarna av olika ferrolegeringar och trender i deras produktion diskuterades. De möjliga skadliga inneslutningarna i olika ferrolegeringar identifierades. Resultaten visade att: 1) MnO-, MnS- och MnO-SiO2-MnS-inneslutningar från FeMn- och SiMn-legeringar har en tillfällig inverkan på stålkvaliteten; 2) Effekten av spårämnen, såsom Al, Ca-innehåll, bör tas hänsyn till innan FeSi-legeringar tillsätts. Dessutom förekommer Al2O3-inneslutningar med ett relativt högt Al-innehåll vanligen i FeTi, FeNb och FeV-legeringar på grund av deras produktionsprocesser. Denna information bör utnyttjas i högre grad åt när dessa ferrolegeringar tillsätts till stål; och 3) specifika legeringar innehållande REM-oxider, Cr(C,N), Cr-Mn-O, Al2O3, Al-Ti-O, TiS och Ti(C,N) har inte studerats tillräckligt för att deras inflytande på stålets renhet ska kunna bedömas. Effekten av stora SiO2-inneslutningar i FeSi och FeMo-legeringar på stålets renhet är inte helt klarlagd. I den andra delen utfördes bedömningar av förekomsten av föroreningar i 10 olika ferrolegeringar (FeSi, FeCr, FeMo, FeV, FeTi, FeNb, FeW, FeB, MnN, FeCrN) med hjälp av olika karakteriseringstekniker. Inneslutningarna i dessa ferrolegeringar bestod mestadels av kiseldioxid eller aluminiumoxid; och/eller oxider av basämnena. Dessutom konstaterades att, de största ämnesföroreningarna och inneslutningarna var nära relaterade till tillverkningsvägen. Fördelarna och nackdelarna med olika metoder jämfördes och detekteringstekniken för inneslutningar av ferrolegeringar optimerades. Resultaten visade att den traditionella tvådimensionella metoden på en polerad yta inte alltid kan tillämpas för undersökning av inneslutningar i vissa specifika ferrolegeringar. Vidare visade sig undersökningarna av inneslutningar på metallytan efter elektrolytisk extraktion vara fördelaktiga för upptäckt av större inneslutningar. Resultaten på både filmfiltret och metallytan bör grupperas för att erhålla en mer omfattande information om inneslutningarnas egenskaper. Bland dessa ferrolegeringar så konstaterades att FeCr och FeNb vara studerade i relativt mindre omfattning. Således, de valdes för vidare studier. I den tredje delen studerades det tidiga smältbeteendet av FeNb-, HCFeCr- och LCFeCr legeringar vid tillsats i flytande järn. Experimenten utfördes med hjälp av "flytande metallsugningstekniken", i vilken ferrolegeringen sattes i kontakt med flytande järn under en bestämd tid innan provet släcktes. Därefter undersöktes mikrostrukturen och bildandet av inneslutningar i de erhållna proverna. Resultaten visade att den inbördes diffusionen mellan en fast ferrolegering och flytande järn bildade en reaktionszon. Den ursprungliga upplösningsmekanismen för en FeNb-legering i flytande järn föreslogs

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    79 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us