Life Cycle Sustainability Assessment of Shale Gas in the UK A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering 2017 Jasmin Cooper School of Chemical Engineering and Analytical Science Table of Contents List of Tables 7 List of Figures 9 Abbreviations 10 Abstract 12 Declaration 13 Copyright Statement 13 Acknowledgements 14 Chapter 1: Introduction 15 1. Background 15 1.1. Shale gas and how it is extracted 15 1.2. Conventional gas and shale gas 19 1.3. Energy mix in the UK 22 1.4. UK shale gas 24 2. Aims and objectives 25 3. Thesis structure 26 4. Methodology 27 4.1. Goal and scope definition 27 4.2. Identification of sustainability issues and definition of indicators 29 4.3. Identification of electricity generation options 30 4.4. Definition of scenarios 31 4.5. Life cycle sustainability assessment 31 4.5.1. Environmental sustainability assessment 31 4.5.2. Economic sustainability assessment 33 4.5.3. Social sustainability assessment 34 4.5.4. Multi-criteria decision analysis 36 4.5.5. Data quality assessment 36 4.6. Conclusions and recommendations 37 References 39 Chapter 2: Shale gas: A review of the economic, environmental and social 48 sustainability Abstract 49 1. Introduction 50 2. Economic aspects 54 2.1. The US experience 54 2.1.1. Direct impacts 54 2.1.2. Indirect impacts 57 2.2. Other regions 58 3. Environmental aspects 61 3.1. Air emissions and impacts 61 3.1.1. GHG and climate change 61 3.1.2. Other air emissions and impacts 64 3.2. Water use and impacts 66 3.2.1. Water use 66 3.2.2. Water contamination 68 3.2.3. Impacts from water contamination 72 3.3. Land use impacts 73 3.3.1. Land use 73 3.3.2. Terrestrial eco-toxicity 74 3.3.3. Earthquakes 74 4. Social aspects 75 4.1. Creation of employment 75 4.2. Health and safety 76 4.3. Public perception 78 2 5. Further discussion and policy implications 80 6. Conclusions 83 References 84 Chapter 3: Environmental impacts of shale gas in the UK: Current situation 104 and future scenarios Abstract 105 1. Introduction 106 2. Methodology 106 2.1. Goal and scope definition 106 2.2. The life cycle of electricity from shale gas 107 2.3. Life cycle of other electricity options 108 2.4. Inventory data and assumptions 110 2.4.1. Shale gas 110 2.4.2. Other electricity options and the current electricity mix 113 2.4.3. Future gas and electricity mix 115 3. Results and discussion 116 3.1. Shale gas versus conventional gas and LNG 116 3.1.1. Abiotic depletion potential of elements (ADPe) 116 3.1.2. Abiotic depletion potential of fossil fuels (ADPf) 117 3.1.3. Acidification potential (AP) 117 3.1.4. Eutrophication potential (EP) 117 3.1.5. Freshwater aquatic ecotoxicity potential (FAETP) 118 3.1.6. Global warming potential (GWP) 118 3.1.7. Human toxicity potential (HTP) 118 3.1.8. Marine aquatic ecotoxicity potential (MAETP) 118 3.1.9. Ozone layer depletion potential (ODP) 119 3.1.10. Photochemical oxidants creation potential (POCP) 119 3.1.11. Terrestrial ecotoxicity potential (TETP) 119 3.2. Comparison of results with the literature 121 3.3. Shale gas versus other electricity options 123 3.4. Sensitivity analysis 125 3.4.1. Drilling Fluid 125 3.4.2. Fugitive emissions of methane 125 3.4.3. Land use change on greenhouse gas emissions 126 3.5. Future gas and electricity scenarios 127 3.5.1. Future gas scenarios 127 3.5.2. Future electricity scenarios 128 4. Conclusions 130 References 133 Chapter 4: Economic viability of UK shale gas and potential impacts on the 137 energy market up to 2030 Abstract 138 1. Introduction 139 2. Methodology 140 2.1. Goal and scope of the study 140 2.2. Calculation of life cycle costs 141 2.2.1. Cost of shale gas production 141 2.2.2. Costs of electricity generation 143 2.3. Data and assumptions 145 2.3.1. Shale gas production 145 2.3.2. Electricity generation 147 2.3.3. Future gas and electricity scenarios 149 3. Results and discussion 150 3.1. Life cycle costs of shale gas 150 3.2. Net present value and break-even price of shale gas 152 3.3. Economic impacts of shale gas 155 3.3.1. Direct economic impacts 155 3.3.2. Indirect economic impacts 156 3 3.4. Life cycle costs of electricity from shale gas 157 3.5. Scenario analysis 159 3.5.1. Cost of gas in 2030 159 3.5.2. Cost of electricity in 2030 160 3.5.2.1. Costs of electricity from gas 160 3.5.2.2. Costs of electricity mix 161 4. Conclusions 162 Nomenclature 164 References 165 Chapter 5: Social sustainability assessment of shale gas in the UK 171 Abstract 172 1. Introduction 173 2. Methodology 173 2.1. Employment 175 2.1.1. Direct employment 175 2.1.2. Local employment 175 2.1.3. Gender equality 176 2.2. Health and safety: worker injuries 176 2.3. Nuisance 177 2.3.1. Noise 177 2.3.2. Traffic increase 177 2.4. Public perception 178 2.4.1. Public support 178 2.4.2. Media impact 178 2.5. Local communities 180 2.5.1. Spending on local suppliers 180 2.5.2. Direct community investment 180 2.6. Infrastructure and resources 181 2.6.1. Diversity of fuel supply 181 2.6.2. Wastewater treatment 182 2.6.3. Land use 182 2.6.4. Regulatory staff requirements 183 3. Results and discussion 184 3.1. Employment 184 3.1.1. Direct employment 184 3.1.2. Local employment 185 3.1.3. Gender equality 186 3.2. Health and safety: worker injuries 186 3.3. Nuisance 187 3.3.1. Noise 187 3.3.2. Traffic increase 188 3.4. Public perception 189 3.4.1. Public support 189 3.4.2. Media impact 189 3.5. Local communities 190 3.5.1. Spending on local suppliers 190 3.5.2. Direct community investment 190 3.6. Infrastructure and resources 191 3.6.1. Diversity of fuel supply 191 3.6.2. Wastewater treatment 193 3.6.3. Land use 194 3.6.4. Regulatory staff requirements 196 4. Conclusions 197 Nomenclature 200 References 202 Chapter 6: The overall sustainability of UK shale gas and other electricity 208 options- current and future scenarios Abstract 209 4 1. Introduction 210 2. Methodology 210 2.1. Multi-criteria decision analysis 210 2.2. Data and assumptions 212 2.3. Data quality assessment 213 3. Results 216 3.1. Sustainability of shale gas electricity compared to other options 216 3.2. Sensitivity analysis 217 3.2.1. Environmental aspect 217 3.2.2. Economic aspect 218 3.2.3. Social aspect 219 3.3. Robustness analysis 220 3.4. Changes needed for shale gas to become the most sustainable 220 option 3.4.1. Multiple sustainability indicators and aspects 221 3.4.2. Individual indicators 223 3.5. Changes needed for shale gas to be comparable to different 226 electricity options 3.5.1. Comparison with conventional gas and LNG 226 3.5.2. Comparison with nuclear power 230 3.5.3. Comparison with hydroelectricity and biomass 232 3.6. Influence on the sustainability of grid electricity 235 3.7. Data quality 238 4. Conclusions 238 References 241 Chapter 7: Conclusions and recommendations 242 1. Conclusions 243 1.1. Life cycle sustainability assessment of shale gas electricity 243 1.1.1. Environmental impacts 243 1.1.2. Economic impacts 245 1.1.3. Social impacts 246 1.1.4. Overall sustainability of shale gas electricity 247 1.2. Sustainability assessment of shale gas in the electricity mix 248 1.2.1. Environmental impacts 248 1.2.2. Economic impacts 248 1.2.3. Social impacts 249 1.2.4. Overall sustainability of shale gas in the electricity mix 249 2. Recommendations 249 3. Future work recommendations 253 4. Concluding remarks 254 Appendices 255 Appendix A 257 Appendix AI. Shale gas formation and extraction 257 Appendix AII. Life cycle of alternative electricity options 261 Appendix AIII. The life cycle assessment (LCA) methodology 264 Appendix AIV. Approach taken in this LCA 269 Appendix AV. Life cycle inventory data 275 Appendix AVI. Economic sustainability assessment 277 Appendix AVII. Social sustainability assessment 278 Appendix AVIII. Multi-criteria decision analysis 278 Nomenclature 282 References 283 Appendix B 288 Appendix BI. Data for different well sizes 288 Appendix BII. Drilling fluid and waste 290 Appendix BIII. Shale gas composition 291 Appendix BIV. Estimated ultimate recovery 292 Appendix BV. Data used for LCA modelling 293 5 Appendix BVI. Land use change 296 Nomenclature 297 References 298 Appendix C 299 Appendix CI. Capital cost of a shale gas well 299 Appendix CII. Sand and chemical quantities 300 Appendix CIII. Break-even price at different discount rates 300 Appendix CIV. Electricity costs 300 References 302 Appendix D 303 Appendix DI. Electricity technologies 303 Appendix DII. Employment 303 Appendix DIII. Health and safety: worker injuries 305 Appendix DIV. Nuisance: traffic increase 305 Appendix DV. Public perception 306 Appendix DVI. Local communities 310 Appendix DVII. Infrastructure 311 References 325 Appendix E 330 Appendix EI. The SMART method 330 Appendix EII. Sustainability indicators 332 Appendix EIII. Pedigree matrix 333 Appendix EIV. Variation in values of sustainability indicators 334 Appendix EV. Data quality assessment 336 Nomenclature 339 References 340 Word count (main text): 61,984 6 List of Tables Table 1: Comparison of the global electricity mix in 1973 to 2013 19 Table 2: The UK electricity mix between 1980 and 2016 23 Table 3: Sustainability indicators used in this work 30 Table 4: LCA indicators 32 Table 5: LCC indicators 33 Table 6: Social sustainability assessment indicators 34 Table 7: Pedigree matrix characteristic and grading criteria 38 Table 8: Current state of shale gas development 51 Table 9: Contribution of shale gas to the US economy in 2010 56 Table 10: Estimates of costs, investment and revenue for developing shale 60 gas in
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages340 Page
-
File Size-