ASTEROIDS CHARACTERIZATION USING DATA FROM LARGE SURVEYS: APPLICATION TO OBJECTS WITH ROMANIAN DESIGNATION IOANA LUCIA BOACA˘ 1, MARCEL POPESCU1,2 1 Astronomical Institute of Romanian Academy Str. Cutitul de Argint 5, 040557 Bucharest, Romania Email: [email protected] 2 Instituto de Astrof´ısica de Canarias (IAC) C/V´ıa Lactea´ s/n, 38205 La Laguna, Tenerife, Spain Abstract. The data provided by large surveys has revolutionized the astronomy. Sev- eral observing programs such as Sloan Digital Sky Survey (SDSS), Vista Hemisphere Survey (VISTA) and Wide-field Infrared Survey Explorer (WISE) provide spectro-photometric information for a huge number of celestial objects, including Solar System bodies. In this paper we show how the observations performed by these surveys can be used for the characterization of individual objects. As an application, we consider the asteroids with designation of Romanian origin which were observed by the VISTA-VHS survey and reported in the MOVIS-C catalog. We taxonomically classified the asteroids using their colors, the Euclidean distances between their reflectances and the reflectances of the 24 Bus-DeMeo mean spectra and performing a Monte Carlo simulation. We reach the conclusion that (9494) Donici is a S-type asteroid, (9495) Eminescu is a V-type, (26478) Cristianrosu is part of the S-complex, while (263516) Alexescu is a Sa-, R- or O-type candidate . Key words: asteroids – observations – photometry – spectroscopy. 1. INTRODUCTION Asteroids are small, rocky bodies that orbit the Sun. Most of them (almost 800 000 objects known ∗) are situated in the Main Belt. This is a region situated between the orbits of Mars and Jupiter, at 2-4 AU from the Sun. Other categories in- clude the Trojans, which are small bodies located in the Lagrangian points of Jupiter orbit, the Mars Crossers and the near-Earth asteroids – objects that come in the terres- trial planet region. The Centaurus-like and the trannsneptunaen objects are orbiting in the giant planets region and in the outer part of the Solar system. The asteroids are the remnants of the planetesimals. Their study provides us information regarding the characteristics of the Solar System at the time the planets formed. They can give us information about the chemical composition of primitive nebula because, unlike planets they haven’t modified their original chemical compo- ∗https://www.minorplanetcenter.net/iau/mpc.html Romanian Astron. J. , Vol. 29, No. 1, p. 83–95, Bucharest, 2019 84 Ioana Lucia BOACA,˘ Marcel POPESCU 2 sition (Barucci et al., 2009). From the point of view of practical science the study of asteroids can help us prevent future possible collisions between the Earth and near-Earth objects (Barucci et al., 2009). The knowledge of the composition and physical properties of an as- teroid would be of great importance when deciding what method to use in order to destroy a potential impactor (Barucci et al., 2009). Compositional information can be inferred from the use of spectrophometric measurements made in wavelengths ranging from ultraviolet, visible and infrared. At first approach, this observational data allows us to make the classification. The three main groups include the S-complex (silicaceous asteroids having spectra with silicate absorption features at 1 µm and 2 µm), the C-complex (carbonaceous chondrites having spectra with flat slopes and small features) and the X-complex (spectra with a moderate slope and small features) (DeMeo et al., 2015). The end member types include peculiar compositions such as the D-types (cometary like spectra), A-types (olivine rich objects) and V-types (basaltic bodies with igneous nature). One of the main tools for determining the properties of a large number of small bodies of Solar System is the use of the large survey data. Among the most extended sky observational programs is VHS (Vista Hemisphere Survey) which surveys the entire southern hemisphere. VISTA (Visible and Infrared Survey Telescope for As- tronomy) is the largest telescope for surveys that uses a near infrared camera with the broad band filters Y, J, H and Ks covering the wavelength range between 0.8 µm and 2.5 µm. The Solar System Objects observed by VISTA survey are included into three catalogues: MOVIS-D (the catalogue that contains all the detections), MOVIS- M (the catalogue that contains the magnitudes of all the objects) and MOVIS-C (the catalogue that contains the colors for the small bodies) (Popescu et al., 2016). The spectro-photometric classification of these objects is reported by Popescu et al. (2018). The Sloan Digital Sky Survey (SDSS) is a digital photometric and spectro- scopic survey that uses the Sloan Foundation 2.5m Telescope at Apache Point Ob- servatory in order to provide photometry in five bands (u’, g’, r’, i’ and z’) in wave- lengths from 0.45 to 0.88. SDSS observed over 100 000 asteroids in visible wave- lengths having magnitudes smaller than 22.1, 22.4, 22.1, 21.2, and 20.3 in each filter respectively. Their spectrophometric classification was performed by several groups including DeMeo et al. (2013b). The results were used to derive a compositional map of the small bodies across the Solar System (DeMeo et al., 2013b). The SDSS survey had several phases: SDSS-I: 2000–2005, SDSS-II: 2005– 2008, SDSS III: 2008–2014 and SDSS IV: 2014–2020. The latest available data release is Data Release 15 that comprises the observations made in July 2017. The next Data Release (DR16) will be available online on December 2019. The Wide-field Infrared Survey Explorer (WISE) used an infrared-wavelength 3 Asteroids characterization using data from large surveys 85 astronomical space telescope in order to survey all the sky in 3.4, 4.6, 12 and 22 µm wavelength range bands (named W1;W2;W3;W4). The WISE project was extended to NEOWISE with the aim of achieving observations regarding near-Earth asteroids and comets (Mainzer et al., 2011b). Thermal modeling was performed to the observed objects in order to determine the diameter and albedo of the body (Masiero et al., 2017). An asteroid is provided with a person’s name in recognition of one’s merits. An asteroid is usually named after someone renown for his contribution to science or arts, after some important personalities from history or in honour of someone who discovered asteroids or is an important researcher in the field of astronomy. The purpose of this article is to exemplify various methods of taxonomic classi- fication. The observations obtained over various wavelength intervals are considered in order to constrain the compositional type. As an application for using the data provided by the large surveys we studied the asteroids with Romanian designation reported in MOVIS-C catalog, namely (9494) Donici, (9495) Eminescu, (26478) Cristianrosu, and (263516) Alexescu. The reason for selecting this catalog is that near-infrared interval provides the key information for identifying the compositional properties. The information about their designation is briefly summarized bellow based on the corresponding Minor Planet Circulars. Nicolae Donici (1874–1960) was member of the French Astronomical Society in 1897, member of the Russian Astronomical Society in 1899 and honorary member of the Romanian Academy in 1922. He was director of the “Amiral Urseanu” Obser- vatory in Bucharest. In 1945 he started working at the Observatory of Paris-Meudon (Stavinschi , 2015). Mihai Eminescu (1850–1889) was Romania’s national poet. He was chosen post-mortem member of the Romanian Academy on October 28th 1948. Cristian Rosu (born 1991) won an award at the Intel International Science and Engineering Fair that took place in May 2010 in San Jose, California. He devel- oped a project that consisted in a road accident prevention system. Matei Alexescu (1929-1993) was the director of the ”Amiral Urseanu” Observatory in Bucharest dur- ing 1957 and 1978 and founder of the Astronomical Observatory ”Victor Anestin” in Bacau. Donici (9494) and Eminescu (9495) were discovered in 1971 by C.J. van Houten and I. van Houten-Groeneveld at Palomar; Cristianrosu (26478) was discov- ered in 2000 by the Lincoln Laboratory Near-Earth Asteroid Research Team and Alexescu (263516) was discovered in 2008 by EURONEAR. The article is organized as follows: in Section 2 we describe the main properties of the studied asteroids, in Section 3 we describe the obtained results (the classifica- tion of asteroids based on MOVIS colors, the classification of asteroids with the use of Euclidean distance and the classification of asteroids using Monte Carlo simula- tion) and in Section 4 we present the future observing opportunities. 86 Ioana Lucia BOACA,˘ Marcel POPESCU 4 2. RETRIEVING INFORMATION FOR THE ASTEROIDS The spectrophotometric data allows to derive taxonomic classification which provides a first indication of their surface composition. One of the most used tax- onomic systems is the Bus-DeMeo taxonomy (DeMeo et al., 2013a). The studied objects are classified into 25 classes, based on their chemical composition. The spec- tral types of this taxonomy were defined by using the Principal Component Analysis over a set of 371 spectra (DeMeo et al., 2013a). We use the colors obtained from large surveys in order to taxonomically classify the objects. As a first step of our study we retrieved the observed images of these objects from the VISTA Science Archive reported in Popescu et al. (2016), as exemplified in Fig. 1. To validate these detections we downloaded the corresponding images and inspected them. This allows us to avoid the misidentification of asteroids. After having inspected all corresponding images, the colors of these objects were retrieved from MOVIS-C catalog. Although the survey data is also provided as databases of sources (including all their properties) found in the observed fields, the visual inspection of the images is a required step when investigating individual objects.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages13 Page
-
File Size-